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vp — Vp at high energies
From diffraction on heavy nuclei to AA — AAV

AA = AAJ /1 J [ via vy — J /[
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Color dipole/ k, -factorization approach
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Color dipole representation of forward amplitude:
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@ impact parameters and helicities of high-energy q and g are conserved during the interaction.

@ scattering matrix is “diagonal” in the color dipole representation.



When do small dipoles dominate ?
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the photon shrinks with @2 - photon wavefunction at large r:

Yy (2,1, Q) o exp[—er], e = y/m2 + z(1 — 2) Q2
@ the integrand receives its main contribution from
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a large quark mass (bottom, charm) can be a hard scale even at Q? = 0.
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for small dipoles we can approximate
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for £ > 1 we then obtain the asymptotics
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probes the gluon distribution, which drives the energy dependence.

From DGLAP fits: xg(x, 12) = (1/x)*(#) with A(42) ~ 0.1+ 0.4 for yi2 = 1+ 102GeV2.
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Total photoproduction cross sections

§ ‘ ‘ WOA!
Ti02 W ]
.0
"5 § 0.22
o W
m10 E %W
a ’ o(yp = pp)
S 022
g o(yp —> wp) w
1L 440 o t wez |
#@40 * o 5(p > ¢p)
4 WO/S
10
o(yp = J/¥p) W
—2| e
10°F  azEUs b
T, pre
* , prelim. 1.8
_3| o fixed target olyp = ¥(25)p) w
10 F
o(yp = Tp)
—4
10 : —
1 10 10 W(GeV)

Glx, @) o (1/x)M@) | A(Q¥) = 0.1+ 0.4 for Q* =1+ 10°



Diffractive Photoproduction vp — Vp
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@ J/¢p = cg, T = bb: (almost) nonrelativistic bound states of heavy quarks. Wavefunctions
constrained by their leptonic decay widths.

@ Large quark mass — hard scale necessary for (perturbative) QCD.
@ F(x,k) = unintegrated gluon density, x ~ M2, /W2,

constrained by HERA inclusive data.
@ for an extensive phenomenology, see Ivanov, Nikolaev, Savin (2006)

@ topical subject: glue at small-x: nonlinear evolution, gluon fusion, saturation...



vp — J/vp, Tp and ¢(2S)/J /¢ vs ZEUS data
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@ dependence on wave function: red: Gaussian WF, black: Coulomb-type WF.
@ dependence on LO/NLO treatment of decay width: dashed - LO width; solid - NLO width.

@ suppression of the 1(25)/J/4 is a meson structure effect — the “node effect”

@ calculation: A.Cisek, PhD thesis (2012).



Total cross section for vyp —> Tp
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@ various pQCD based approaches to T-production. They tend to agree better with the new
data-points.

@ also here, the Gaussian WF is preferred.
@ A. Rybarska, WS, A. Szczurek Phys. Lett. B668(2008)



VM photoproduction from nucleon to nucleus:

P
Fla, k) = 0G(x, k)0 log k2

@ for heavy nuclei rescattering/absorption effects are enhanced by the large nuclear size
@ gq rescattering is easily dealt with in impact parameter space

@ the final state might as well be a (virtual) photon (total photoabsorption cross section) or a
qg-pair (inclusive low-mass diffraction).

@ Color-dipole amplitude

(A Tr[Sq(b)SE (b + N]IA)
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F(b,x,r)=1—



Nuclear unintegrated glue at x ~ xu

@ at not too small x ~ x4 = (Ram,) ™! ~ 0.01 only the gq state is coherent over the nucleus, and I'(b, x, r)
can be constructed from Glauber-Gribov theory:

F(b,xa,r) =1 — exp[—c(xa, F) Ta(b)/2] = /d%u — "M ¢(b, xa, k).

@ nuclear coherent glue per unit area in impact parameter space:
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o(b, xa, k) = Z w;(b, XA)fU)(xA,K:), f(l)(x,n) =

@ collective glue of j overlapping nucleons :

fU)(XA, K) = / [ﬂ d2n;f(1)(xA, n;)} 6(2)(n — Z Ki)

@ probab. to find j overlapping nucleons

l’i\(b7 XA)

wj(b, xa) = i exp[—va(b, xa)l, va(b, xa) = %as(qz)UU(XA)TA(b)a

@ impact parameter b — effective opacity va, g% = the relevant hard scale.



Small-x evolution: adding qg(ng) Fock-states
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@ the effect of higher qgg-Fock-states is absorbed into the x—-dependent dipole-nucleus
interaction

@ evolution of unintegrated glue

9¢(b, x, p)
Olog(1/x)

@ corresponds to taking the contribution to shadowing from high—mass diffraction into account

= KgrrL ® ¢(b, x, p) + Q[¢](b, x, p)



small-x evolution: adding qg(ng) Fock-states:

@ as we increase energy Fock states qgg, qggg, - . . qg(ng) with strongly ordered light—cone
momenta z, K -+ K zp K z1 < 1 will be coherent over the target.

@ their effect can be resummed and absorbed into the x—dependent dipole cross section:

do(x,r
W = /d2pK(P7P + I’) |:(7q¢‘7g(X,p7 r) — (7()(7 r)
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2
, Y(p) = % F(ucp)

K(p.p+r) o \w(p) —(p+ 1)

Q ,uZG ~ 0.5GeV?, 'gluon mass’ - a smooth cutoff for long wavelength gluons, which respects
'gauge cancellations’.



..in momentum space it is BFKL:

@ the equivalence of dipole and momentum space approaches extends to the small-x evolution:

of (x,
OT00P) o [ 2 K(p,p+ k) Flxo k) — F(x,p) | o K+ p)
Adlog(1/x)
= KsrrL ® f(x,p)
@ the kernel:
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@ nonperturbative parameters: pg, freezing of as.



Nuclear unintegrated glue: small-x evolution

@ again, add the gqgg Fock-state:

@ small—x evolution Nikolacv, Zakharov, Zoller /Mueller /94:

rq?],A(b7 XA, f) - rq(_],A(bv XA I’) + IOg(XA/X)érq(_],A(b7 f)

6rqz‘7,A(b7 I’) & /d2pK(p, p+ r) (rqag,A(b7 P; I’) - rqE],A(by I’))

rqc‘;g,A(by p,r) = rqa,A(by p)+ rqc‘;,A(bv p+r)— rqa,A(b7 p)rqa,A(bv p+r)

@ evolution of unintegrated glue Balitsky — Kovchegov /96-/98:

% = KariL ® ¢(b, x, p) + Q[¢](b, x, p)

Q[@](b,x,p):f dzqdzrw(b-,x-,q){ {K(pm,mq)fK(p,n+p)fK(p,q+p)} #(b,x,K)

—¢(b,x,p) [K(n,n+q+p)f}<(n,n+p):| }nonumber

(1)



properties of the nonlinear term:

@ first piece of the nonlinear term looks like a diffractive cut of a triple-Pomeron vertex

/qud%qs(b, X, q) [K(p +k,p+q)— K(p,s+p)—K(p,q+ p)} #(b, x, k)

P P+ K
d%@qb(b,x,n){ - }
/ PP+ (PR +ug

@ at large p? the nonlinear term is a pure higher twist, it is dominated by the 'anticollinear’
region k2 > p?. (see also ) It cannot be written as a square of the

integrated gluon distribution.
d’k 5
/ ? (b7X7K/)
p2

2 i’k 2 2
—2K0¢(b,x,p ) v d q¢(b7X7q )
px F K2

@ in that regard it differs from the earlier Mueller-Qiu and Gribov-Levin-Ryskin gluon fusion
corrections.
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Prediction
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@ Predictions for a future EIC: Q2 = 1, 5,20 GeV?

o(v"A) R __ coherent diffraction
Ac(~*p) * ‘coh = total

@ calculation from Nikolaev, WS, Zoller & Zakharov '07

ORA:

@ dashed = qg, solid = qg + qgg contributions



Coherent diffractive production of J/W, T on 2% Pp
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@ A. Cisek, WS, A. Szczurek Phys. Rev C86 (2012) 014905..

@ Ratio of coherent production cross section to impulse approximation

o(vyA — VA; W) do(yN — VN)

Reon(W) = ——n— 2| =4 d2bT3(p) —— "/
con (W) oM A S VAW T W/ a(b) . o



Absorption corrected flux of photons

Nf‘ff (w

o(A1Ay = A1Axf;s) = /dw o(yA2 — fA2;2wv/s) + (1 < 2)

dneT = / d?b S2(b)dN(w, b)

@ dN(w)= Weizsacker-Williams flux

@ survival probability:

S3(6) = 9 ( — o Tan (b)) ~ 6(16] = (R + )
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Coherent exclusive production in AA: rapidity distributions
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@ A. Cisek, WS, A. Szczurek, Phys. Rev C86 (2012) 014905.
@ left column: J/WV, right column:T
@ The large nuclear size cuts off the flux of hard photons severly — different rapidity shape than

in pp.



Absorbed photon fluxes for yv-collisions
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@ survival probability:

S2(b) = exp ( — oNN TAlAg(b)) ~ 0(|b] — (R1 + R2))



Production mechanisms for vy — J/¢J/¢
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“Box"-diagrams: lowest order in asg,
dominate at low energies.
Fermion-antifermion exchange in crossed
channels: die out with energy.

Two-gluon exchange is formally of higher order in
ag, but does not die out with energy.

The v — J /1) transition is governed by the same
wavefunction as for photoproduction vp — J/v¥p.
First evaluation by Ginzburg, Panfil & Serbo
1988 in the extreme nonrelativistic limit for the
QQ bound-state.

Most of the literature concentrates on improvements of the two-gluon exchange mechanism
(BFKL-rise of the cross section etc.). But for present day energies, the box mechanisms dominate.



Production mechanisms for vy — J/¢J/¢: results
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@ red dashed: non-relativistic limit:
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non rel.
] @ dot dashed: Fermi-motion effects included
1 (Gaussian wavefunction).
@ inclusion of a gluon mass pg ~ 0.7 GeV will
rel. ] introduce another suppression factor ~ 0.45.
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Results for AA — AAJ /Y[y
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@ dashed: box-mechanism; dotted: two-gluon exchange



Summary

@ In photoproduction of heavy quarkonia, the large quark mass ensures dominance of small
dipoles.

@ a sensitive probe of the (unintegrated) gluon distribution of the target.
@ “gluon shadowing” is included via the rescattering higher QQg Fock states.

@ heavy nuclei are of special interest in view of the scarcity of probes of the nuclear glue. Here
saturation effects are enhanced by the nuclear size.

@ J/1-pair production in via vy fusion in AA is dominated by the “box-diagram” mechanisms.
Multiple interactions of the type (yIP — J/v¢) ® (PP — J/4) may be important.
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