Weak Coherent Meson Production

L. Alvarez-Ruso¹, L. Geng², J. Nieves¹, I. Ruiz Simo³, M. Valverde⁴, M. Vicente Vacas¹

- 1. IFIC, Universidad de Valencia
- 2. BeiHang University
- 3. Universidad de Granada
- 4. RCNP, Osaka

General Introduction

Neutrino interactions are important for:

Oscillation experiments

 ν detection, E_{ν} reconstruction, ν flux calibration

Electron-like backgrounds:

NC π° production (incoherent, coherent)

Photon emission in NC

- Neutrino interactions are interesting for:
 - Hadronic physics

■ Nucleon and Nucleon-Resonance (N-△, N-N*) axial form factors

Strangeness content of the nucleon spin

Nuclear physics

Information about: nuclear correlations, MEC, spectral functions

nuclear effects: essential for the interpretation of the data

Motivation: 1π production

 $\blacksquare \text{ CC: } \nu_l N \to l^- \pi N'$

$\blacksquare \operatorname{NC:} \nu_l N \to \nu_l \, \pi \, N'$

Motivation: 1π production

- $\blacksquare \text{ CC: } \nu_l N \to l^- \pi N'$
 - source of CCQE-like events (in nuclei)
 - needs to be subtracted for a good E_{ν} reconstruction Leitner, Mosel,
 PRC81

Motivation: 1π production

- \blacksquare CC: $\nu_l N \rightarrow l^- \pi N'$
 - source of CCQE-like events (in nuclei)
 - meeds to be subtracted for a good E_{ν} reconstruction

 $\blacksquare \text{ NC: } \nu_l N \to \nu_l \pi N'$

EVALUATE: π^{o} : e-like background to $u_{\mu} \rightarrow \nu_{e}$ searches

Coherent pion production

- $\blacksquare \operatorname{CC} \nu_l A \to l^- \pi^+ A$
- $\blacksquare \operatorname{NC} \nu A \to \nu \pi^0 A$
- Takes place at low q²
- Very small cross section but relatively larger than in coherent π production with photons or electrons
- At q² ~ 0 the axial current is not suppressed while the vector is.

Coherent pion production

- $\square \operatorname{CC} \nu_l A \to l^- \pi^+ A$
- $\blacksquare \mathsf{NC} \ \nu A \to \nu \pi^0 A$
 - Models:

 - Microscopic

PCAC models

Rein-Sehgal NPB 223 (83) 29

In the q²=0 limit, PCAC is used to relate ν induced coherent pion production to πA elastic scattering

$$\frac{d\sigma}{dq^2 dy dt} \bigg|_{q^2 = 0} = \frac{G_F^2 f_\pi^2}{2\pi^2} \frac{(1 - y)}{y} \frac{d\sigma}{dt} (\pi^0 A \to \pi^0 A) \bigg|_{q^2 = 0, E_\pi = q^0}$$

$$q = k - k' \leftarrow \text{transferred by the } \nu$$

$$t = (q - \pi)^2 \leftarrow \text{transferred to the purchase}$$

 $t = (q - p_{\pi})^2 \leftarrow \text{transferred to the nucleus}$ $y = q^o / E_{\nu}$

Continuation to $q^2 \neq 0$: × $(1 - q^2/1 \text{GeV}^2)^{-2}$

A in terms of πN scattering:

$$\times |F_{\mathcal{A}}(t)|^2 F_{\text{abs}} \left(\frac{d\sigma}{dt} (\pi^0 N \to \pi^0 N) \right)_{t=0, E_{\pi}=q^0}$$

 $F_{\mathcal{A}}(t) = \int d^{3}\vec{r} \, e^{i(\vec{q} - \vec{p}_{\pi}) \cdot \vec{r}} \left\{ \rho_{p}(\vec{r}) + \rho_{n}(\vec{r}) \right\} \leftarrow \text{nuclear form factor}$

 $F_{\rm abs} \leftarrow$ removes from the flux outgoing π that undergo inelastic collisions

PCAC models

- Rein-Sehgal NPB 223 (83) 29
 - Problems: Hernandez et al., PRD 80 (2009) 013003
 - q²=0 approximation neglects important angular dependence at low energies and for light nuclei

Trento 2012

The πA elastic description is **not realistic**

PCAC models

- Kartavtsev et al., PRD 74 (2006), Berger & Sehgal, PRD 79 (2009), Paschos & Schalla, PRD 80 (2009)
 - Some $q^2 \neq 0$ kinematical corrections introduced
 - **Use experimental** πA cross section
 - Problem: PCAC relates Coh\(\pi\) with off-shell \(\pi\)A: q² \le 0 \(\neq\) m²\(\pi\)
 Incoming \(\pi\) do not penetrate inside A (absorption & rescattering) but \(\nu\) do
 - **Spurious** π distortion is introduced

- Kelkar et al., PRC55 (1997); Singh et al., PRL 96 (2006); LAR et al., PRC 75, 76 (2007); Amaro et al., PRD 79 (2009), Hernandez et al., PRD 82 (2010); Leitner et al., PRC 79 (2009); Martini et al., PRC 80 (2009); Nakamura et al, PRC 81 (2010)
 - Model for the elementary ν N \rightarrow l N π amplitude
 - Coherent sum over all nucleons
 - Medium effects
 - Distortion of the outgoing pion
 - Nonlocalities
 - Same hadronic/nuclear input as for the incoherent(resonant) channel
 - Solution Can be applied/validated in other reactions (γ , e, π , ...)
 - Limited to low energies

Model for the elementary $\nu N \rightarrow l N \pi$ amplitude

Hernandez, PRD 76 (2006)

Model for the elementary $\nu N \rightarrow l N \pi$ amplitude

Hernandez, PRD 76 (2006)

The amplitude for CC π^+ production:

$$\mathcal{M} = \frac{G}{\sqrt{2}} \cos \theta_c \, l_\mu J^\mu$$

 $\blacksquare J^{\mu} \leftarrow \text{Nuclear current} \Leftrightarrow \text{sum over all nucleons}$

For the dominant direct Δ mechanism:

$$J^{\mu} = -\frac{\sqrt{3}}{2}i\int d\vec{r}\,e^{i\vec{q}\cdot\vec{r}}\left[\rho_{p}(r) + \frac{\rho_{n}(r)}{3}\right]\frac{f^{*}}{m_{\pi}}D_{\Delta}\,p_{\pi}^{\alpha}\,\mathrm{Tr}\left[\bar{u}\Lambda_{\alpha\beta}\mathcal{A}^{\beta\mu}u\right]\,\phi_{\mathrm{out}}^{*}$$

 $D_{\Delta} \leftarrow \text{propagator}$

 $\Lambda_{\alpha\beta} \leftarrow \text{spin 3/2 projection operator}$

 $j^{\mu} = \bar{\psi}_{\beta} \mathcal{A}^{\beta \mu} u \leftarrow \text{N-}\Delta$ weak current

 $\phi^*_{\mathrm{out}} \leftarrow$ spin 3/2 projection operator

N-∆ transition current

Helicity amplitudes can be extracted from data on π photo- and electro-production

$$\begin{split} A_{1/2} &= \sqrt{\frac{2\pi\alpha}{k_R}} \left\langle R, J_z = 1/2 \left| \epsilon_{\mu}^{+} J_{\rm EM}^{\mu} \right| N, J_z = -1/2 \right\rangle \zeta \\ A_{3/2} &= \sqrt{\frac{2\pi\alpha}{k_R}} \left\langle R, J_z = 3/2 \left| \epsilon_{\mu}^{+} J_{\rm EM}^{\mu} \right| N, J_z = 1/2 \right\rangle \zeta \\ S_{1/2} &= -\sqrt{\frac{2\pi\alpha}{k_R}} \frac{|\mathbf{q}|}{\sqrt{Q^2}} \left\langle R, J_z = 1/2 \left| \epsilon_{\mu}^{0} J_{\rm EM}^{\mu} \right| N, J_z = 1/2 \right\rangle \zeta \end{split}$$

Helicity amplitudes \Rightarrow Vector form factors

N-∆ transition current

$$\begin{aligned} \mathcal{A}^{\beta\mu} &= \left(\frac{C_3^V}{M} (g^{\beta\mu} \not\!\!\!/ - q^{\beta} \gamma^{\mu}) + \frac{C_4^V}{M^2} (g^{\beta\mu} q \cdot p' - q^{\beta} p'^{\mu}) + \frac{C_5^V}{M^2} (g^{\beta\mu} q \cdot p - q^{\beta} p^{\mu}) + g^{\beta\mu} C_6^V \right) \gamma_5 \\ &+ \frac{C_3^A}{M} (g^{\beta\mu} \not\!\!\!/ - q^{\beta} \gamma^{\mu}) + \frac{C_4^A}{M^2} (g^{\beta\mu} q \cdot p' - q^{\beta} p'^{\mu}) + C_5^A g^{\beta\mu} + \frac{C_6^A}{M^2} q^{\beta} q^{\mu} \end{aligned}$$

■ N-△ transition current

$$\begin{aligned} \mathcal{A}^{\beta\mu} &= \left(\frac{C_{3}^{V}}{M} (g^{\beta\mu} \not\!\!\!/ - q^{\beta} \gamma^{\mu}) + \frac{C_{4}^{V}}{M^{2}} (g^{\beta\mu} q \cdot p' - q^{\beta} p'^{\mu}) + \frac{C_{5}^{V}}{M^{2}} (g^{\beta\mu} q \cdot p - q^{\beta} p^{\mu}) + g^{\beta\mu} \frac{C_{6}^{V}}{C_{6}} \right) \gamma_{5} \\ &+ \frac{C_{3}^{A}}{M} (g^{\beta\mu} \not\!\!/ - q^{\beta} \gamma^{\mu}) + \frac{C_{4}^{A}}{M^{2}} (g^{\beta\mu} q \cdot p' - q^{\beta} p'^{\mu}) + C_{5}^{A} g^{\beta\mu} + \frac{C_{6}^{A}}{M^{2}} q^{\beta} q^{\mu} \end{aligned}$$

Axial form factors

$$\begin{aligned} C_6^A &= C_5^A \; \frac{M^2}{m_\pi^2 + Q^2} \leftarrow \text{PCAC} \\ C_4^A &= -\frac{1}{4} C_5^A \quad C_3^A = 0 \leftarrow \text{Adler model} \\ C_5^A &= C_5^A(0) \left(1 + \frac{Q^2}{M_{A\Delta}^2} \right)^{-1} \end{aligned}$$

 $\quad \ \ \, = \ \ \, \sigma \sim \left[C_5^A(0)\right]^2$

 $C_5^A(0) = \frac{g_{\Delta N\pi} f_{\pi}}{\sqrt{6}M} \approx 1.2 \leftarrow \text{ off diagonal GT relation}$

From ANL and BNL data on $u_{\mu}\,d
ightarrow\mu^{-}\,\pi^{+}\,p\,n$

- Hernandez et al., PRD 81 (2010)
- Deuteron effects
- Non-resonant background
- C^A₅(0) =1.00 ± 0.11 GeV
- 20 % reduction of the GT relation

Delta in the medium:

$$D_{\Delta} \Rightarrow \tilde{D}_{\Delta}(r) = \frac{1}{(W + M_{\Delta})(W - M_{\Delta} - \operatorname{Re}\Sigma_{\Delta}(\rho) + i\tilde{\Gamma}_{\Delta}/2 - i\operatorname{Im}\Sigma_{\Delta}(\rho))}$$

 $\tilde{\Gamma}_{\Delta} \leftarrow$ Free width $\Delta \rightarrow$ N π modified by Pauli blocking

$$\begin{aligned} &\operatorname{Re}\Sigma_{\Delta}(\rho) \approx 40 \operatorname{MeV}\frac{\rho}{\rho_{0}} \\ &\operatorname{Im}\Sigma_{\Delta}(\rho) \leftarrow \text{many-body processes:} \begin{array}{l} \bullet \Delta \ \mathsf{N} \to \mathsf{N} \ \mathsf{N} \\ \bullet \Delta \ \mathsf{N} \to \mathsf{N} \ \mathsf{N} \\ \bullet \Delta \ \mathsf{N} \to \mathsf{N} \ \mathsf{N} \\ \bullet \Delta \ \mathsf{N} \to \mathsf{N} \ \mathsf{N} \end{array} \end{aligned}$$

Pion distortion: $\phi^*_{out}(\vec{p}_{\pi},\vec{r}) \leftarrow$ solution of the Klein-Gordon equation

$$\left(-\vec{\nabla}^2 - \vec{p}_{\pi}^2 + 2\omega_{\pi}\hat{V}_{\text{opt}}\right)\phi_{out}^* = 0$$

 $\hat{V}_{\mathrm{opt}}(r) \leftarrow \begin{array}{l} \mathrm{optical \ potential \ in \ the } \Delta \mathrm{-hole \ model:} \\ \mathrm{Nieves, \ Oset \ \& \ Garcia \ Recio \ NPA \ 554 \ (93)} \end{array}$

$$2\omega_{\pi} \hat{V}_{opt}(\vec{r}) = 4\pi \frac{M^2}{s} \left[\vec{\nabla} \cdot \frac{\mathcal{P}(r)}{1 + 4\pi g' \mathcal{P}(r)} \vec{\nabla} - \frac{1}{2} \frac{\omega}{M} \Delta \frac{\mathcal{P}(r)}{1 + 4\pi g' \mathcal{P}(r)} \right]$$

$$\mathcal{P} = -\frac{1}{6\pi} \left(\frac{f^*}{m_{\pi}} \right)^2 \left\{ \frac{\rho_p + \rho_n/3}{\sqrt{s} - M_{\Delta} - \operatorname{Re}\Sigma_{\Delta} + i\tilde{\Gamma}_{\Delta}/2 - i\operatorname{Im}\Sigma_{\Delta}} + \frac{\rho_n + \rho_p/3}{-\sqrt{s} - M_{\Delta} + 2M - \operatorname{Re}\Sigma_{\Delta}} \right\}$$
Direct Crossed
 Δ -hole excitations

$$\vec{p}_K \phi^*_{\text{out}}(\vec{p}_K, \vec{r}) \rightarrow i \nabla \phi^*_{\text{out}}(\vec{p}_K, \vec{r})$$

Medium effects reduce considerably de cross section
Pion distortion shifts down the peak

Non-local treatment of Δ propagation:

- Leitner et al., PRC 79 (2009).
- PWIA with bound state spinors in a mean field

 $\sigma \sigma \sigma_{local} \sim 0.5, 0.6$ for $\mathsf{E}_{\nu} = 0.5, 1$ GeV

- Non-local treatment of Δ propagation:
 - Leitner et al., PRC 79 (2009).
 - PWIA with bound state spinors in a mean field
 - $\sigma/\sigma_{local} \sim 0.5, 0.6$ for $E_{\nu} = 0.5, 1$ GeV
 - Nakamura et al, PRC 81 (2010)
 - Earge effect persists with Δ modification and π distortion

- Non-local treatment of Δ propagation:
 - Leitner et al., PRC 79 (2009).
 - PWIA with bound state spinors in a mean field
 - $\sigma/\sigma_{local} \sim 0.5, 0.6$ for $E_{\nu} = 0.5, 1$ GeV
 - Nakamura et al, PRC 81 (2010)
 - **Large effect persists with** Δ modification and π distortion
 - In local models: is this effect "operationally included" in the Δ mass shift?

CC/NC ratio

CC/NC ratio

Strangeness production

- $\Delta S = 0 \text{ e.g. } \nu_l \, p(n) \rightarrow l^- \, K^+ \, \Sigma^+(\Lambda)$ $\Delta S = 1:$
 - Cabibbo suppressed but with lower thresholds than $\Delta S = 0$ Hyperon e.g. $\bar{\nu}_l p \rightarrow l^+ \Sigma^0(\Lambda)$ Kaon: $\nu_l p \rightarrow l^- K^+ p$ $\nu_l n \rightarrow l^- K^0 p$ $\nu_l n \rightarrow l^- K^+ n$
 - Accessible by Minerva but also MiniBooNE, T2K, ...
 - \blacksquare Background for proton decay ${\rm p} \rightarrow \nu \ {\rm K^+}$
 - There is a coherent channel $\nu_l A \rightarrow l^- K^+ A$

Strangeness production

- $\Delta S = 0 \text{ e.g. } \nu_l p(n) \rightarrow l^- K^+ \Sigma^+(\Lambda)$ $\Delta S = -1:$
 - **Cabibbo suppressed** but with lower thresholds than $\Delta S = 0$
 - antiKaon: $\bar{\nu}_l p \rightarrow l^+ K^- p$ $\bar{\nu}_l p \rightarrow l^+ \bar{K}^0 n$ $\bar{\nu}_l n \rightarrow l^+ K^- n$
 - Accessible by Miner ν a but also MiniBooNE, T2K, ... Potentially interesting for anti ν beams There is a coherent channel $\bar{\nu}_l A \rightarrow l^+ K^- A$

K production model

- Microscopic K production on the nucleon Rafi Alam et al., PRD82
 - Includes all terms in SU(3) chiral Lagrangians at leading order

Parameters: f_{π} , μ_p and μ_n , D and F (from semileptonic decays)

- A global dipole form factor : $F(q^2) = (1-q^2/M_F^2)^{-2}$, $M_F = 1$ GeV
- Absence of S=1 baryon resonances \Rightarrow Extended validity of model

K production model

- Microscopic K production on the nucleon Rafi Alam et al., PRD82
 - Includes all terms in SU(3) chiral Lagrangians at leading order

A global dipole form factor : $F(q^2)=(1-q^2/M_F^2)^{-2}$, $M_F = 1$ GeV (+- 10%)

K production model

- Microscopic K production on the nucleon Rafi Alam et al., PRD82
 - vs $\Delta S = 0$ from GENIE

Kbar production model

Microscopic Kbar production on the nucleon Rafi Alam et al., PRD85

Direct terms with strange baryons (Λ , Σ , $\Sigma^*(1385)$) in the intermediate state

Kbar production model

Microscopic Kbar production on the nucleon Rafi Alam et al., PRD85

- N- Σ*(1385) transition: C3V, C4V, C5V, C3A, C4A, C5A, C6A form factors related to those of N- Δ (1232) using SU(3) symmetry
- In particular: C5A(0) ← off-diagonal G-T

Kbar production model

Microscopic Kbar production on the nucleon Rafi Alam et al., PRD85

Small contribution from $\Sigma^*(1385)$: it is below Kbar production threshold

Amplitude:
$$\mathcal{M} = \frac{G}{\sqrt{2}} \sin \theta_c \, l_\mu J^\mu$$

Nuclear current:

$$J^{\mu} = \sum_{i} \sum_{r=p,n} \int d\vec{r} \, e^{i\vec{q}\cdot\vec{r}} \rho_{r}(r) \frac{1}{2} \operatorname{Tr} \left[\bar{u} \, \Gamma^{\mu}_{i(r)} \, u \right] \, \phi^{*}_{\text{out}}$$

i=all mechanisms

Kaon distortion:

$$\left(-ec{
abla}^2 - ec{p}_K^2 + 2\omega_K V_{ ext{opt}}
ight)\phi^*_{ ext{out}} = 0 \quad \leftarrow ext{Klein-Gordon eq.}$$

$$\vec{p}_K \phi^*_{\text{out}}(\vec{p}_K, \vec{r}) \rightarrow i \vec{\nabla} \phi^*_{\text{out}}(\vec{p}_K, \vec{r})$$

K⁺ optical potential

$$2\omega_K V_{\text{opt}} = \Pi(r) = C m_K^2 \frac{\rho}{\rho_0} - i |\vec{p}_K| \sum_{N=p,n} \rho_N \, \sigma_{\text{tot}}^{(K^+N)}$$

- Well described in the $t \rho$ limit
- \blacksquare Re(V_{opt}) :
 - Repulsive 🛛
 - Dominated by a Weinberg-Tomozawa term Waas et al., PLB 379(1996)
- Im(V_{opt}) :
 - $\mathbf{M} \mathsf{K} \mathsf{N} \to \mathsf{K'} \mathsf{N'}$ (QE & CX)
 - $\blacksquare \mathsf{K} \mathsf{N} \to \mathsf{K'} \mathsf{N'} \pi$
 - $\mathbf{m} \sigma_{tot} \leftarrow \mathbf{GiBUU}$ parametrizations Buss et al., Phys. Rep. 512 (2012)

K⁻ optical potential

K-p interaction dominated by $\Lambda(1405)$ resonance

A(1405) dynamically generated by s-wave meson-baryon rescattering in coupled channels

■ Dressing of meson propagators (1p1h, △h)

- Self consistent treatment of K⁻
- Ramos & Oset, NPA 671 (2000)

- Very small cross section...
- Compare to Coh π^+ (on ¹²C):

 $\sigma(\text{Coh}\pi^+, 1 \text{ GeV}) \sim 0.05 - 0.1 >> \sigma(\text{Coh}K^+, 1.35 \text{ GeV}) \sim 0.00014 \text{ x}10^{-38} \text{ cm}^2$

Very small cross section... why?

 $\frac{d\sigma}{d\Omega_{\mu}dE_{\mu}d\Omega_{K}} \sim F^{2}(|\vec{q}-\vec{p}_{K}|), \ |\vec{q}-\vec{p}_{K}| > q_{0} - |\vec{p}_{K}| = \sqrt{m_{K}^{2} + \vec{p}_{K}^{2}} - |\vec{p}_{K}|$

Very small cross section... why? because K is heavy

 $\frac{d\sigma}{d\Omega_{\mu}dE_{\mu}d\Omega_{K}} \sim F^{2}(|\vec{q}-\vec{p}_{K}|), \ |\vec{q}-\vec{p}_{K}| > q_{0} - |\vec{p}_{K}| = \sqrt{m_{K}^{2} + \vec{p}_{K}^{2}} - |\vec{p}_{K}|$

Very small cross section... why? because K is heavy

- ${\scriptstyle \blacksquare} {\scriptstyle \mathsf{m}_{\mathsf{K}}} \rightarrow {\scriptstyle \mathsf{m}_{\mathsf{K}}}/2 \Leftrightarrow \sigma \rightarrow \sigma \ /2$
- Sensitive to the nuclear density distribution

Results: $\nu_{\mu} A \to \mu^{-} K^{+} A$ $\bar{\nu}_{\mu} A \to \mu^+ K^- A$ 5e-05 2e-05 142 4e-05 1.5e-05α [10⁻³⁸ cm²] 3e-05 $5 [10^{-38} \text{ cm}^2]$ 1e-05 2e-05 5e-06 1e-05 00 50 100 150 200 250 300 50 $\frac{150}{Z+A}$ 100 200 250 300 Z + A

- From the largest CT one naively expects: $\sigma \sim (Z+A)^2$
 - Irregular trend: *σ* increase with A narrower nuclear form factors secondary diffractive maxima

Conclusions

- **CC** and **NC** Coh π have been studied with PCAC and microscopic models
- PCAC (microscopic) models are better suited for high (low) energies
- **Rein-Sehgal** model overestimates $Coh\pi$ cross section
- Is Coh π cross section too small to bother?
- **CC** π^+ /NC π° =0.14^{+0.30}-0.28 from SciBooNE is hard to understand
- **Coh** π has been studied with:
 - Microscopic production mechanism based on SU(3) chiral Lagrangians
 - (anti)kaon distortion from KG eq. with a realistic optical potential
- Small cross sections are obtained due to:
 - Small (Cabibbo suppressed) σ on nucleons
 - Large momentum transferred to the nucleus because of the large kaon mass
 - Destructive interference
 - Kaon distortion