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What is a Neural Network (NN)? 

• Neural Networks are effectively 

function approximators 

 

• They are loosely modeled on neural 

activity in the brain (neurons fire or 

remain silent based on sensory input) 

 

• NNs have many, though not unlimited, 

applications 



Function approximator? 

• A NN with ∞ neurons can 

reproduce any function 

 

• In practice this means we 

can approximate any 

function 

 

• As we increase the number 

of neurons we get closer to 

the actual function 

 

• How is this useful? 



Example: Population Separation 



Typical Applications 

• Physics analysis (classify events, reconstruction) 

 

• Medical diagnosis 

 

• Finance (market prediction, loan classification) 

 

• Image processing (facial recognition, self-driving) 

 

• Nearly any classification problem 



Basic Structure of a NN 

• Network is composed of neurons 

fully connected to network inputs 

and each other 

 

• The output of a neuron is a 

weighted combination of its 

inputs, with an added constant 

(bias term) (and an applied 

activation function) 

 

• Weights and biases are the 

parameters of the network 

 

• We want find the parameters that 

produce the desired output 



A Single Neuron 



Activation Functions 

• Activation functions provide non-linearity to the 

network (necessary for generalization to any 

function) 

 

• Multiple layers of neurons without activation 

functions are equivalent to a single layer  

   (just linear combination of the inputs) 

 

• In the same way, a linear activation function will 

provide no additional complexity.  

   So activation functions must be non-linear! 



Sigmoid: the classic activation function 

• Output range: (0,1) 

 

• Like On/Off state of a real 

neuron 

 

• Continuous! 

Between x range (-4,4) we have a 

smooth transition from 0 (inactive) 

to 1 (activated). This is important! 



Why do we want a smooth  

activation function? 

Bad! 

• Small changes in weights 

move us along this curve 

 

• At some point a small 

change will cause a 

sudden change in the 

activation of the neuron 

 

• This will cause chaotic 

behavior in the network 

We need a continuous activation function so that the 

network changes smoothly when modifying the 

parameters! 



ReLu: The new activation function 

• ReLu is non-linear, because all negative inputs are  

             changed  to zero 

 

• Used to avoid small contributions from neurons in early 

layers in deep networks 



Why a bias term in the sum? 

• Let’s use the Sigmoid activation function 

 
• Let’s also assume that the input to the 

function is always very large (without a 

bias term): 

               (w1 x1 + w2 x2 ) > 1000 

• The neuron output will always be 1, because the inputs to the 

activation function are always much larger than 4! 

 

• Always returning 1 (independent of input) is not very useful 

 

• We need to shift the inputs down by ~1000 to put them in a range 

where the sigmoid function can discriminate 

 

• This is done with the bias term, which is learned for each neuron 



Training the network 

• First initialize all network parameters  

     (traditionally this is done randomly) 

 

• Then pass labeled data (with the correct answers) 

through the network 

 

• Check how correct the network solution is (Cost function) 

 

• Modify parameters to make the network solution a bit 

more correct (Backpropagation) 

 

• Continue running data through the network and modifying 

parameters until desired accuracy is achieved  

   (or for a set number of repetitions) 



Training Data 

• We need a set of labeled data to train the network 

(supervised learning). This will be N entries, each with: 

• A list of input variables: x1, x2, x3 …. 

• The “solution” for each entry                     

(correct category, for example) 

   

• We split this data into a training and testing set    

(generally 2/3 and 1/3 of the full set, respectively) 

 

• The training set is used to train the network, or tune its 

parameters 

 

• The testing set is used to test the network on data it has 

not seen during learning 



Cost/Loss Function 

• The Cost function tells us how correct the network output is. It is any 

function such that the minimum value occurs at the correct solution. 

 

• We want this to be a minimum because we will use its gradient to 

modify parameters 

 

 

• A typical cost function: 

 

 

 

 

     Where a is the network  

     output and y is the correct 

     solution from the data. 

 



Modify parameters 

• To modify the network parameters we use 

Backpropagation, or Gradient Descent 

 

• Effectively we calculate the partial derivatives of the cost 

function with respect to all of the parameters. This gives us 

the gradient. 

 

• We then move a small amount in the direction opposite of 

the gradient (want lower cost function) by a small change in 

the parameters 

 

• If we make many steps towards a smaller cost function we 

should eventually find a minimum (and so a small 

difference between the network output and the true values) 



Gradient Descent 

We may find a local 

minimum, rather than 

global, which is fine. 

If we are not careful with 

the step size we may 

bounce around the 

minimum. 



Accuracy/Training Plots 

• Here we have a typical example of training curves for a network. 

 

• Blue shows the accuracy of the network predictions (test data set) 

• Green and Red show the value of the Cost/Loss values for the  

    testing and training data sets, respectively. 

• Here the accuracy 

reaches ~90% 

 

• This level of accuracy 

is reached rather 

early in the training 

 

 



Overtraining 

• It is possible for a network to 

Overtrain, or for it to learn specific 

features of its training data too 

well 

 

• In this case the network will not 

be as general, and will not 

perform well on data it has not 

seen before 

This is much like overfitting, which you can see in this plot. 

The black curve would be a good separating function, while 

the green curve focuses too much on this particular data set. 

 



Test/Training loss when overtraining 
We can see overtraining occur in our example plot. After  

2000 iterations the loss from the training data continues to 

drop, while the test loss does not improve. These curves 

should overlap. 

It is probably best 

to stop training 

this network near 

2000 iterations 

(maybe 3000). 



Deep Neural Networks 



Why are Deep NNs possible now? 

Traditionally Deep networks (large NNs) were not feasible. They are now 

possible due to improved hardware, as well as the following: 

• The ReLu activation function allows neurons in early layers 

to have an effect on the Cost function’s gradient 

 

• It was found that most local minima are as good as the 

global, so it is not necessary to search too hard for it 

 

• Stochastic Gradient Descent (checking the gradient after 

small batches, rather than after the full training set) 

 

• New methods of parameter initialization (instead of random) 



Convolutional Neural Network (CNN) 

Effectively a set of image preprocessing steps which 

feed into a standard Neural Network 



Why is preprocessing necessary? 

• Using each pixel of a large image as input will 

create a massive Neural Network 

 

• A simple NN may not be able to find the 

desired object in a different position of an 

image (spatial invariance) 

 

• Convolution can also find “features” that a 

pure NN may not ever learn 



Convolution (pattern searching) 

• The Kernel / Filter is a simple matrix 

 

• The kernel is moved along the input, and the 

sum of the products of the kernel values and 

the image values under the kernel are used as 

output (simply a weighted average) 

 

• The resulting output is the Activation / Feature 

Map 

 

• The Stride is simply the number of spaces the 

kernel moves with each step 

 

• The output layer is sometimes padded with 

zeros to have a size consistent with the input 

layer (Padding) 

 

 



Convolution example: Edge finding 

Kernels are generally learned by the network! 



Pooling (information reduction) 

Pooling is used to reduce the 

information flowing to the network, 

while keeping important activations 

 

In this way we retain the general 

locations of features (kernel 

activations), without keeping less 

interesting information 

 

Max Pooling: Keep only the largest 

activation in an area of the feature 

map 

 

Average Pooling: Average all 

activation values within the area 





1x1 Convolution 
(information reduction and pattern interweaving) 

• This layer is used to reduce the parameter space and 

interweave patterns from feature maps 

 

• It is surprisingly powerful, and further helps to detect 

features while reducing data flow 

 

• Basically, feature maps are added together with 

weights, which become network parameters. 

So if we have 200 kernels, and so 200 feature maps, we can add them 

together with weights to make as many/few outputs as we like. 

 

One can imagine adding a vertical edge feature map to a horizontal one, 

to get a general edge detection, so 2 maps become 1 more powerful map 



Dropout Layer 

 

• Applied to fully connected layers 

    (the neural network at the end) 

 

• Nodes are randomly removed 

from the training process by 

setting their weights to zero 

 

 

• This promotes redundancy in the 

network, and guards against 

overtraining 

Used only during training! 



Example CNN use in physics? NOnA! 

NuMI Off-axis ne Appearance 

• Neutrino oscillations cause 

different neutrino flavors to appear 

during interaction than when 

created during production 

 

• Understanding these oscillations 

helps us understand fundamental 

properties of the neutrino 

 

• The beam composition is 

measured at the Near Detector 

(mostly muon neutrinos) 

 

• The number of electron/muon 

neutrinos appearing at the Far 

Detector provides the oscillation 

measurement 

Measure neutrino oscillation parameters! 
(among other interesting neutrino topics) 
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NOvA Data 
32 
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NOvA Data 

550 ms window in the Far Detector 
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NOvA Data 

10 ms window during active beam 
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How to Distinguish Neutrino Types? 

nm 

ne 

NC 
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Network Inspiration 

Inception modules are groups of Convolution/Pooling layers that include 1x1 Conv. 

to reduce the parameters in the network, allowing for deeper networks. 
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• 80x100 matrix of energy deposits are extracted from the 

detector data. Greatly reduces data flow through network 

 

• X and Y-views are sent separately through the two towers 

of NOvA’s network 

 

• The towers are merged, and the network outputs a value 

for each interaction type, which is Softmax normalized 

NOvA’s Event Classification CNN 
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Event Classification Network Results 
39 



Particle Identification 

Particle identification is necessary for in-depth physics analysis. 

• Neutrino interactions in the detector are simulated 

• Hits are clustered into tracks 

• An interaction vertex is determined 

• Single particle tracks are separated for training 

40 



Particle ID Network 

Context provides up to an 11% improvement in efficiency and purity! 
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More CNN work in NOvA 

• Continue to improve event classification network and particle ID 

network 

 

• NOvA has created a CNN to improve ne and electron energy 

estimation:  

 PRD: DOI: 10.1103/PhysRevD.99.012011 

 

• Creation of LSTM network to improve nm energy estimation 

 

• CNN to reduce cosmic ray background 

 

• The NOvA test beam detector will provide labeled data from 

single-particle interactions allowing for data-driven checks of 

deep learning methods 

 

• And more…. 

43 



Problems with traditional NNs 
• They require a huge amount of training data 

(whereas humans can infer from relatively small 

amount of initial information) 

 

• They are a computationally heavy method 

(requiring large amounts of parallel processing and 

memory) 

 

• They aren’t generally very adaptable, requiring 

retraining when new situations arise 

 

• Constructing a suitable NN is a bit of an art form. 

There are guidelines, but NNs are not generally 

understood well enough to make rules based on 

first principles 



Conclusions 

• We have only looked at one type of NN: the feed-

forward NN with supervised learning (labeled 

data) 

 

• Neural Networks are not the only method of 

Machine Learning (Decision Trees, Regression 

methods, K-means…) 

 

• Innovations happen all the time, as this is a 

young field! 



Questions? 


