
An Introduction to

Neural Networks

Dubna University

Chris Kullenberg

Oct. 16 2019

What is a Neural Network (NN)?

• Neural Networks are effectively

function approximators

• They are loosely modeled on neural

activity in the brain (neurons fire or

remain silent based on sensory input)

• NNs have many, though not unlimited,

applications

Function approximator?

• A NN with ∞ neurons can

reproduce any function

• In practice this means we

can approximate any

function

• As we increase the number

of neurons we get closer to

the actual function

• How is this useful?

Example: Population Separation

Typical Applications

• Physics analysis (classify events, reconstruction)

• Medical diagnosis

• Finance (market prediction, loan classification)

• Image processing (facial recognition, self-driving)

• Nearly any classification problem

Basic Structure of a NN

• Network is composed of neurons

fully connected to network inputs

and each other

• The output of a neuron is a

weighted combination of its

inputs, with an added constant

(bias term) (and an applied

activation function)

• Weights and biases are the

parameters of the network

• We want find the parameters that

produce the desired output

A Single Neuron

Activation Functions

• Activation functions provide non-linearity to the

network (necessary for generalization to any

function)

• Multiple layers of neurons without activation

functions are equivalent to a single layer

 (just linear combination of the inputs)

• In the same way, a linear activation function will

provide no additional complexity.

 So activation functions must be non-linear!

Sigmoid: the classic activation function

• Output range: (0,1)

• Like On/Off state of a real

neuron

• Continuous!

Between x range (-4,4) we have a

smooth transition from 0 (inactive)

to 1 (activated). This is important!

Why do we want a smooth

activation function?

Bad!

• Small changes in weights

move us along this curve

• At some point a small

change will cause a

sudden change in the

activation of the neuron

• This will cause chaotic

behavior in the network

We need a continuous activation function so that the

network changes smoothly when modifying the

parameters!

ReLu: The new activation function

• ReLu is non-linear, because all negative inputs are

 changed to zero

• Used to avoid small contributions from neurons in early

layers in deep networks

Why a bias term in the sum?

• Let’s use the Sigmoid activation function

• Let’s also assume that the input to the

function is always very large (without a

bias term):

 (w1 x1 + w2 x2) > 1000

• The neuron output will always be 1, because the inputs to the

activation function are always much larger than 4!

• Always returning 1 (independent of input) is not very useful

• We need to shift the inputs down by ~1000 to put them in a range

where the sigmoid function can discriminate

• This is done with the bias term, which is learned for each neuron

Training the network

• First initialize all network parameters

 (traditionally this is done randomly)

• Then pass labeled data (with the correct answers)

through the network

• Check how correct the network solution is (Cost function)

• Modify parameters to make the network solution a bit

more correct (Backpropagation)

• Continue running data through the network and modifying

parameters until desired accuracy is achieved

 (or for a set number of repetitions)

Training Data

• We need a set of labeled data to train the network

(supervised learning). This will be N entries, each with:

• A list of input variables: x1, x2, x3 ….

• The “solution” for each entry

(correct category, for example)

• We split this data into a training and testing set

(generally 2/3 and 1/3 of the full set, respectively)

• The training set is used to train the network, or tune its

parameters

• The testing set is used to test the network on data it has

not seen during learning

Cost/Loss Function

• The Cost function tells us how correct the network output is. It is any

function such that the minimum value occurs at the correct solution.

• We want this to be a minimum because we will use its gradient to

modify parameters

• A typical cost function:

 Where a is the network

 output and y is the correct

 solution from the data.

Modify parameters

• To modify the network parameters we use

Backpropagation, or Gradient Descent

• Effectively we calculate the partial derivatives of the cost

function with respect to all of the parameters. This gives us

the gradient.

• We then move a small amount in the direction opposite of

the gradient (want lower cost function) by a small change in

the parameters

• If we make many steps towards a smaller cost function we

should eventually find a minimum (and so a small

difference between the network output and the true values)

Gradient Descent

We may find a local

minimum, rather than

global, which is fine.

If we are not careful with

the step size we may

bounce around the

minimum.

Accuracy/Training Plots

• Here we have a typical example of training curves for a network.

• Blue shows the accuracy of the network predictions (test data set)

• Green and Red show the value of the Cost/Loss values for the

 testing and training data sets, respectively.

• Here the accuracy

reaches ~90%

• This level of accuracy

is reached rather

early in the training

Overtraining

• It is possible for a network to

Overtrain, or for it to learn specific

features of its training data too

well

• In this case the network will not

be as general, and will not

perform well on data it has not

seen before

This is much like overfitting, which you can see in this plot.

The black curve would be a good separating function, while

the green curve focuses too much on this particular data set.

Test/Training loss when overtraining
We can see overtraining occur in our example plot. After

2000 iterations the loss from the training data continues to

drop, while the test loss does not improve. These curves

should overlap.

It is probably best

to stop training

this network near

2000 iterations

(maybe 3000).

Deep Neural Networks

Why are Deep NNs possible now?

Traditionally Deep networks (large NNs) were not feasible. They are now

possible due to improved hardware, as well as the following:

• The ReLu activation function allows neurons in early layers

to have an effect on the Cost function’s gradient

• It was found that most local minima are as good as the

global, so it is not necessary to search too hard for it

• Stochastic Gradient Descent (checking the gradient after

small batches, rather than after the full training set)

• New methods of parameter initialization (instead of random)

Convolutional Neural Network (CNN)

Effectively a set of image preprocessing steps which

feed into a standard Neural Network

Why is preprocessing necessary?

• Using each pixel of a large image as input will

create a massive Neural Network

• A simple NN may not be able to find the

desired object in a different position of an

image (spatial invariance)

• Convolution can also find “features” that a

pure NN may not ever learn

Convolution (pattern searching)

• The Kernel / Filter is a simple matrix

• The kernel is moved along the input, and the

sum of the products of the kernel values and

the image values under the kernel are used as

output (simply a weighted average)

• The resulting output is the Activation / Feature

Map

• The Stride is simply the number of spaces the

kernel moves with each step

• The output layer is sometimes padded with

zeros to have a size consistent with the input

layer (Padding)

Convolution example: Edge finding

Kernels are generally learned by the network!

Pooling (information reduction)

Pooling is used to reduce the

information flowing to the network,

while keeping important activations

In this way we retain the general

locations of features (kernel

activations), without keeping less

interesting information

Max Pooling: Keep only the largest

activation in an area of the feature

map

Average Pooling: Average all

activation values within the area

1x1 Convolution
(information reduction and pattern interweaving)

• This layer is used to reduce the parameter space and

interweave patterns from feature maps

• It is surprisingly powerful, and further helps to detect

features while reducing data flow

• Basically, feature maps are added together with

weights, which become network parameters.

So if we have 200 kernels, and so 200 feature maps, we can add them

together with weights to make as many/few outputs as we like.

One can imagine adding a vertical edge feature map to a horizontal one,

to get a general edge detection, so 2 maps become 1 more powerful map

Dropout Layer

• Applied to fully connected layers

 (the neural network at the end)

• Nodes are randomly removed

from the training process by

setting their weights to zero

• This promotes redundancy in the

network, and guards against

overtraining

Used only during training!

Example CNN use in physics? NOnA!

NuMI Off-axis ne Appearance

• Neutrino oscillations cause

different neutrino flavors to appear

during interaction than when

created during production

• Understanding these oscillations

helps us understand fundamental

properties of the neutrino

• The beam composition is

measured at the Near Detector

(mostly muon neutrinos)

• The number of electron/muon

neutrinos appearing at the Far

Detector provides the oscillation

measurement

Measure neutrino oscillation parameters!
(among other interesting neutrino topics)

31

NOvA Data
32

33

NOvA Data

550 ms window in the Far Detector

34

NOvA Data

10 ms window during active beam

35

How to Distinguish Neutrino Types?

nm

ne

NC

36

Network Inspiration

Inception modules are groups of Convolution/Pooling layers that include 1x1 Conv.

to reduce the parameters in the network, allowing for deeper networks.

37

• 80x100 matrix of energy deposits are extracted from the

detector data. Greatly reduces data flow through network

• X and Y-views are sent separately through the two towers

of NOvA’s network

• The towers are merged, and the network outputs a value

for each interaction type, which is Softmax normalized

NOvA’s Event Classification CNN
38

Event Classification Network Results
39

Particle Identification

Particle identification is necessary for in-depth physics analysis.

• Neutrino interactions in the detector are simulated

• Hits are clustered into tracks

• An interaction vertex is determined

• Single particle tracks are separated for training

40

Particle ID Network

Context provides up to an 11% improvement in efficiency and purity!

41

42

More CNN work in NOvA

• Continue to improve event classification network and particle ID

network

• NOvA has created a CNN to improve ne and electron energy

estimation:

 PRD: DOI: 10.1103/PhysRevD.99.012011

• Creation of LSTM network to improve nm energy estimation

• CNN to reduce cosmic ray background

• The NOvA test beam detector will provide labeled data from

single-particle interactions allowing for data-driven checks of

deep learning methods

• And more….

43

Problems with traditional NNs
• They require a huge amount of training data

(whereas humans can infer from relatively small

amount of initial information)

• They are a computationally heavy method

(requiring large amounts of parallel processing and

memory)

• They aren’t generally very adaptable, requiring

retraining when new situations arise

• Constructing a suitable NN is a bit of an art form.

There are guidelines, but NNs are not generally

understood well enough to make rules based on

first principles

Conclusions

• We have only looked at one type of NN: the feed-

forward NN with supervised learning (labeled

data)

• Neural Networks are not the only method of

Machine Learning (Decision Trees, Regression

methods, K-means…)

• Innovations happen all the time, as this is a

young field!

Questions?

