January 14, 2003

Nomad Reconstruction Software

Nomad DST Package

Version v7rd

Kevin Varvell'

Abstract

This note describes the Data Summary Tape (DST) packageGMAD. The version described here is
designed for production and examination of DSTs using reeosion 7r7 and related libraries.
This package includes :

e Code to produce the DST ZEBRA structure from phase2 banks

o Additional temporary code to add information to the DST ste without g
repass of phase2.

e Access routines to the DST structure for C and Fortran progrers, includ
ing the package of Fergus Wilson.

Falkiner High Energy Physics Department
The University of Sydney
(KEV@PHYSICS.USYD.EDU.AU)

Table of Contents

1

Introduction 1
1.1 Alittle history e 1
1.2 Layoutofthisdocument e 1
1.3 Acknowledgements e 2
Brief Description of the Package 3
2.1 Initialisation 3
22 Endofrun 3
2.3 CreatingaDST e e 3
2.4 Printoutput L 3
25 Debugoutput e 4
2.6 DatacardSinreCon it i e e 4
2.7 Histograms e e 4
The DST Structure 5
3.1 DSTHeaderBank. 5
3.2 EventSummaryBank 5
3.3 Reconstructed Vertex Summary Bank Lan L 7
3.4 Match SummaryBanks 7
3.4.1 MASbankstructure 7
3.4.2 Subdetector blocklet structure and Identifiers 7
3.5 LeptoSummaryBank e 8
3.6 Simulated Vertex SummaryBank 8
3.7 Simulated Track SummaryBank 8
3.8 Simulated Calorimeter SummaryBank, 9
3.9 FZHeader 9
3.10 Alternative ECAL clustering of Gary Feldman 9
3.11 Extrapolator information Lo 10
3.12 Padova Bremsstrahlung Strip 10
3.13 Notesonbankcontents 10
3131 OMISSIONS v v e e 10
3.13.2 Tracklengths 11
3.13.3 Bremsstrahlung algorithms 11

4 Access Functions

4.1 Accessroutines for C Programmers e
4.1.1 Navigatingthe structure inC e
4.1.2 Low-level Access to Bank Contents in C
4.1.3 Higher-level Access to Bank Contents in C e e

4.2 Access for FORTRAN Programmers vttt i o e
4.2.1 Theinclude file dstparams.inc
4.2.2 Direct Navigation with FORTRAN
4.2.3 AccessRoutinesand FORTRAN

4.2.4 Higher-level Access to Bank Contents in FORTRAN
4.3 Utility Routines e e
4.3.1 General utilityroutines e
4.3.2 Extended accessSroutines e e
4.3.3 Accessroutines forpackedwords e L
4.3.4 Routines for backwards compatibility

The Banks in More Detail

51 TheFZHeader e

52 TheDSTbhank. e e

53 TheEVSbank. e

54 TheRVXSbank

55 TheMASbank
5.5.1 Blocklet 101
5.5.2 Blocklet 104
5,53 Blocklet201
5,54 Blocklet202
555 Blocklet301
556 Blocklet304
5.5.7 Blocklet401
5.5.8 Blocklet404
5,59 Blocklet501
5.5.10 Blocklet505
5.5.11 Blocklet 701
5.5.12 Blocklet 707
5.5.13 Blocklet 801
5.5.14 Blocklet808
5.5.15 Blocklet901
5.5.16 Blocklet904
5.5.17 Blocklet909

12
12
12
13
15
15
15
17
19
21
27
27
29
29
31

5.5.18 Blocklet 1101
5.5.19 Blocklet 1104
5.5.20 Blocklet 1109
5.5.21 Blocklet 1111
5.5.22 Blocklet 1201 e
5.5.23 Blocklet 1301 e
5.6 TheLEPSbank e
5.7 TheSVXSbhank. e
5.8 TheSTKSbhank
59 TheSCASbhank e

Code
6.1 Includefiles
6.2 TheSource Code i i
6.2.1 Creation of the DST structure e
6.2.2 Printingofthe DST structure cu.....
6.2.3 Auxilliary routines for filling of the DST structure
6.2.4 Accessroutinestothe DST structure oL
6.3 Histograms e e
6.4 Awk scripts for automatic code generation L
6.5 Making changestothe DSTcode
6.6 Buildingthe DSTlibrary e e
6.7 Documentation e e

Release Notes

7.1 virdRelease NOtES o e e
711 VTIrBtOVTrd . . . o

7.2 Whatis missingand why -v7rd e e

7.3 Version7rAand RECON e e

7.4 Futuredirections and iSSUES e

Bibliography

List of Figures

3.1 TheDSTbhankstructure e

65
65
66
66
68
69
75
75
76
76
77
78

79
79
79
79
79
80

81

Chapter 1: Introduction

This note describes the ZEBRA-based Data Summary Tape (Bt8Igture for the NOMAD offline.
The need for a relatively compact representation of theuwtuththe matching process (reconstruction
phase 2), which can form a common starting point for analygis one of the main motivations for the
setting up of such a structure.

1.1 Alittle history

The DST structure is based exclusively on the ZEBRA bankcgire available after Recon phase 2
processing has taken place. The first release was given the wir0, and was used to produce DSTs
from the results of recon prod4 production on 1995 data. Télase wasnly intended to be used
with prod4 output tapes from 1995. It is unsuitable for usthwicon v7 compatible libraries in two
respects - it has code to fix bugs in prod4 output which haveesyiently been fixed, and it requires
some extra “non-standard” code in order to access infoamatot available on prod4 output but which
is now available with recon version 7 production.

An updated version for prod4 output, v1rl, was subsequestBased. This fixed some bugs in v1rO0,
and included in the DST library itself the access packagesajis Wilson [2]. DSTs were not produced
with this version.

Version v7rl was produced in March 1997. This was intendedise with the first test of production
made with recon v7 and the associated libraries at the timechMeedback from its use was obtained
which was incorporated into release v7r2 [3], intended 8# with reconv7r7, phase2v7r3c and related
libraries. This release was made in June 1997.

Version v7r3, released in February 1998, incorporatedrabwmew features. It was set up to run on the
samephase?2 output that was used for v7r2, in order to avoid requa time consuming new pass of
phase2. This meant that some of the new features in v7r3 hiael be adde@d hocat the DST level,
which was messy but expedient.

The present release, v7r4, is a minor iteration on v7r3. Tpdates, due to B. Yabsley, have been added.

These correct the TRD shared hit handling which was not leginctbrrectly in the production to produce
v7r3, and add a single word to allow goodness of fit of VO vesito the primary to be ascertained. The
ad hoc code which eliminates the need for a full phase2 repsing is present in this version also, as
the likelihood of a further phase2 processing of the NOMAEad#ecreases with time.

1.2 Layout of this document

A brief overview of the package is given in chapter 2. Theddtre in its present form will be described
in chapter 3. In chapter 4, the access routines which aréablaifor extracting information from the
structure will be described, and some examples given fordJRamtran. A more detailed description of
the banks is given in chapter 5. In chapter 6, some detailseobtganisation of the DST code itself will
be given, intended for specialists who may need to interittt thhe source code. Finally, in chapter 7,
release notes for the current version are given and somantlssues discussed.

A Web Page exists which gives up to date information on theeotiistatus of DST development. This
may be accessed from the NOMAD Web Pages by going to the FAREE and following the “dst”
link from there [1].

This document may be found in the file SNOMAD' PS/dstv7r4.pstee NOMAD cluster. The corre-
sponding bank documentation can be found in the file SNOMASXIBtv7r4 bankdoc.ps. As indicated

1

2 Chapter 1. Introduction

above, this version of the library includes the access cad¥gge developed by Fergus Wilson [
which will be referred to in this document as the “dstaccemstkage. At the time of writing, the doc
umentation for “dstaccess” can be found in the file SNOMADd&env1r2.ps, but it is wise to chec
the above web page for the up-to-date location.

1.3 Acknowledgements

Because of the fact that this version of the DST package igtled to be run on phase2 output th
has not been reprocessed through an updated phase2 pab@gédas had to be provided to obtain
calculate some of the new information that is not providetheapresent phase2 output ZEBRA banli
and to correct some of the problems with the phase2 from wbiSfi versions v7r2 and v7r3 wer
produced.

This code has come from various sources. Here is a hopefoityptete list of people providing thi
code - | apologise if anyone has been omitted: Dario Autiardgpnio Bueno, Marco Contalbrigo, Luig
DiLella, Achim Geiser, Peter Hurst, Stefano Lacaprara, 2@rOrestano, Fabrizio Salvatore, Brut
Yabsley.

Chapter 2: Brief Description of the Package

The package in its present form has been designed to besicgerfto recon, although the interface is
fairly clean. In principle, therefore, it can be called frather executives. For example, it could be
called from camel to produce a DST structure from a reconutdiie which has previously had phase 1
and 2 processing performed.

The DST package has been written primarily in FORTRAN, buttaims some C code as well, espe-
cially when coding the access functions. The routines ds=tiin this chapter are FORTRAN routines;
however, many routines written in one language mave beeatered callable from the other through the
cfortran package - one example is given below.

2.1 Initialisation

An initialization routine is provided with the nanESTINI, which currently specifies which match com-
binations of subdetectors have been defined in this packagesets their identifiers. It also initializes
variables used to compile statistics on the DST size. Thire is called during the initialization phase.
If not called explicitly by the executive program, it will lwalled the first time a call t€reateDST or
PrintDST is invoked. These are introduced below.

2.2 Endofrun

An end of run routineDSTEND is also provided. At present this routine prints some diesi®n the
size of the DST, provided that the DST print level is set to fjreater.

2.3 Creating a DST

For each event, the DST ZEBRA structure is created from theZEEBRA structure by a call to the
subroutineCreateDST().

In this version of the packag€reateDST()also calls a preprocessing routif@stPreProcess()which
performs the necessary additional work required becausse@hhas not been reprocessed prior to input
the DST package. This will be described in more detail in tdraps and 7.

2.4 Print output

A flag to control the amount of printout produced is used bypghekage. To set this flag, the routine
dstSETPRFLAG(ILEVEL) should be called, where the higher the valulL&VEL , the more printout
is obtained. If set to 0, no printout occurs, while if set t@dmmary information is printed BSTEND
is called.
A routine to print the contents of the DST bank structure rentprovided with the package, which can
be invoked with a call t&rintDST(). In version 1 of the package this routine provided an outpuat i
wide format (up to 132 characters), which required specabling when viewing or printing the output.
From version v7rl onwards, a maximum width of 80 characterespected in the output, and the word
names used are identical to those in the bankdoc.
The routines mentioned in this chapter have been renderetlable, and can be invoked by capitalising
the subroutine name, e.g.

PRINTDSTQ) ;

In this case, the user should include the headed§tgen.hin the C source file.

3

4 Chapter 2. Brief Description of the Packag

2.5 Debug output

In a similar manner to the print flag described above, a delaggdlused by the package, primarily of u
in development. In this case the routidstSETDBFLAG(ILEVEL) should be called, with increasin
ILEVEL giving increasing amounts of output (at present ILEVEL ee2 gives maximum output).

2.6 Data cards in recon

Version 7 of recon introduced a data card DSTF which can be teseet the print and debug flags
desired. Two arguments are taken, the first setting the lexiet, the second the debug level. The defa
is a print level of 1 and a debug level of 0, as shown below.

*

* -> DSTF
* Print / Debug for DST
DSTF 1 0

*

In order to get DST output from a recon run, two cards must esset], the LUNS card and the TRIN
card.

The following LUNS card will place the DST ZEBRA structurega fort.13 and the full phase2 outpt
(including the DST ZEBRA structures) into fort.11.

*
* -> LUNS

* Input/Ouput/FzIn/Fz0ut/DSTOut
LUNS 1=5 2=6 3=10 4=11 5=13
*

The following TRIM card will ensure that fort.13 containslpthe DST structure.

————— if DSTout in LUNS -----
Which structure to keep (DST)
1 : >0 --> Drop RAWD
>1 --> Drop SEVT/EVT/DETE
2 : =1 --> Drop DETE
=2 --> Drop DETE but BDCH
3 : =1 --> Compress TX/TXD
=2 --> Drop TX/TXD

* O X X X X X X X X X

TRIM 1=2 2=1 3=2

2.7 Histograms

Some code exists which will histogram all words stored inBR&T structure. For more details refer |
chapter 6.

Chapter 3: The DST Structure

The DST banks are placed in the overall ZEBRA structure &t-fnof the top level NOMA bank, which
was reserved for such a structure from early in the expetimen

Figure 3.1 shows the layout of the banks. A head&T bank acts as a hanger to which the banks
containing real information are attached. The followingey of banks can be found in the structure:

e EVS: TheEVentSummary bank contains some global summary information feretrent, which
may be useful for users to make some of their selections witfomping through the detailed
structure.

e RVXS: TheReconstructed/erteX Summary bank contains a list of the reconstructed vertices in
the event.

e MAS: TheMA tch Summary banks are a linear structure containing one bankreof the match
table, or if you like, one bank per “object” that the matchiras produced.

e LEPS: TheLEPto Summary bank contains a list of the particles in the initidémaction generated
using LEPTO (in Neglib), as given in the LUJETS common.

e SVXS: TheSimulatedVerteX Summary bank contains a list of the simulated vertices in tleae

e STKS: The SimulatedTradk Summary bank contains a list of the simulated tracks (chaeget!
neutral) contained in the event, as provided by the GENOMikition.

e SCAS The SimulatedCAlorimeter Summary bank contains a list of the calorimeter cells which
have deposited energy in them, as provided by the GENOM aiionl

Note that some of the banks are only available for Monte Cevknts. These are the LEPS, SVXS,
STKS and SCAS banks. The EVS, RVXS and MAS banks are avaifableoth data and Monte Carlo.
The detailed contents of the banks just described can belfiouthe bank documentation, and also in
chapter 5. A copy of the current working version of the DSTkdncument can be found in $NO-
MAD PS/dstv7r4 bankdoc.ps on the cluster.

Some further information and discussion on the banks in thetsire will be given in the following
sections.

3.1 DST Header Bank

The only information stored in the header bank is the versiamber of the DST, stored as a decimal
number. This can be retrieved using the C function (of typatfltaking as argument the pointer to the
DST bank)DstVersion(' Dst Dst)or the FORTRAN function (of type REALBetDstVersion()

3.2 Event Summary Bank

The purpose of this bank is to provide some global summaxgrimétion for the event. It may be of

use in making some very crude event selections without bgawifoop through the banks containing the
more detailed information.

Chapter 3. The DST Structur

-7

j—| MAS > MAS

Figure 3.1: The DST bank structure

-6

3.3. Reconstructed Vertex Summary Bank 7

3.3 Reconstructed Vertex Summary Bank

This is essentially a list of vertices which have been retanted by the vertex package, and the bank

is thus implemented as a word giving the number of verticeiedt followed by a series of fixed length
blocklets one per vertex.

Note the following:

e End point vertices, which have vertex type 10 in the VTX baakthe full structure, have been
suppressed on the DST if there are no neutral objects attachiso skipped over are vertices
of type 11 (dummy neutrals from the unassociated matchesierhi- these were type 8 in earlier
versions of the VTX structure) and vertices of type -1 (whach dummy primary vertices produced
when no primary vertex is reconstructed, in order to haveesamere to hang the TRK banks).

3.4 Match Summary Banks

The format of the MAS banks requires some additional expianavhich will hopefully help in under-
standing the bankdoc.

Each MAS bank corresponds to a line in the match table maieddby the matching engine, and can be
thought of as an object which has resulted from the matchinggss. Every object in the match table

is realised as a MAS bank, and so the size of the MAS strucamé &mount of ZEBRA overhead) is

determined by what objects the match algorithms employethéynatching engine choose to leave in

the match table. This is an area where choices made by developmatching algorithms can sensitively
affect the ultimate size of the DST.

3.4.1 MAS bank structure

A MAS bank consists of a fixed set of header words followed byumlper of subdetector blocklets.
There is one header word per NOMAD subdetector, and thisdreadrd, if non-zero, indicates that

the subdetector in question is contributing informatiothi® match object. Moreover, if the subdetector
information is present, the header word contains an offeat the start of the bank to the subdetector

blocklet containing the information.

By storing information in this way, the match informationncke made reasonably compact. For an
overhead of one word per subdetector which nalstaysbe present, it is then only necessary to store

those blocklets for which subdetector informatiomdsually present in the match table, this information
being reached within a particular MAS bank using the offset.

3.4.2 Subdetector blocklet structure and Identifiers

The first word of a subdetector blocklet is the blocklet tyipejcating what sort of match this blocklet
corresponds to. This is constructed in the form mmnn, whereisrthe ID of the subdetector providing
the information, and nn is the ID of the “seed” subdetectowhich it is matched. The IDs range from
1 for drift chambers to 9 for HCAL, following the normal NOMABonvention. In addition, ID 10 has

been reserved for the potential addition of the silicongisgie. IDs greater than 10 are used for special

purposes. ID 11 is used for storing the alternative ECALteltiisg of Gary Feldman, as will be explained

later. ID 12 is used to store extrapolator information, aBdlB to store Padova Bremsstrahlung strip

information.

8 Chapter 3. The DST Structur

As examples of blocklet IDs, a drift chamber track is given101, and an unassociated calorime
cluster ID 404. If the calorimeter cluster is in fact matchied drift chamber track, it would have IL
401. Subsequent words in the blocklet contain detailedinébion for the subdetector, and can be eitt
integer or floating depending on the context. The bankdotiges this information as 10:1 (for integer
or |O:F (for floating).

This implementation based on a blocklet identifier agaid$ga compactness, since only the informati
relevant to a match to the specified seed subdetector needrid,swithout storing empty words. |
does make the bankdoc harder to read, however, and the paiate here is that for a given MAS banl
at most onlyone type of blocklet will be present for a given subdetector. Exwample, although the
bankdoc describes for the calorimeter blocklet types 4@1484, a MAS bank with a non-zero offset
the calorimeter in its header words will contaithera blocklet 401 (cluster matched to a drift chamk
track)or a blocklet 404 (unassociated cluster), but not both.

Some of the MAS blocklets are variable in length, in casesra/ftds appropriate to store informatio
for a number of objects at once. Examples are the blockléisab@ 808, for muon chamber standalo
tracks and events in FCAL respectively, and the blockle®l1dand 1301, which store cross-referen
lists of objects in the bremsstrahlung strips.

The structure of the MAS banks will probably become cleaftarastudying the examples of acce:
given in chapter 4, or by looking at the output produced byRhatDST() routine.

3.5 Lepto Summary Bank

This bank gives a summary of the event generation for theeptes/ent. A header gives the kinemat
variables, including neutrino energy (and parent partighe), =55, yp;, W2, @ andv, along with the
number of primary particles in the event. This header ifedld by a series of blocklets, one per partic
giving the particle type, 4-momentum and mass of each pagioduced in the fundamental interactic
generated by LEPTO. Short-lived particles which will beseduently decayed by GENOM are include
The kinematic information is derived from the LEPT bank amel particle list from the LUJT bank, th
latter being essentially the information in the LUJETS coonmpminus the vertex information.

3.6 Simulated Vertex Summary Bank

This is a list of vertices which have been produced duringGE&NOM simulation of the event, usin
the information which gets stored in the SVTX banks. As in tase of the RVXS bank, the ban
is implemented as a word giving the number of vertices stofeltbwed by a series of fixed lengtt
blocklets one per vertex. Because the number of verticesrgtd by a detailed GENOM simulatio
can be large, and we are primarily interested in verticeshvhiay have been reconstructed using |
vertex package, cuts will be developed to reduce the numbegrtices stored. At present, end poi
vertices (type 10) are suppressed unless the track poitatitrgem is a muon, and a z cut at the centre
the HCAL is employed.

3.7 Simulated Track Summary Bank

The STKS bank is a list of tracks which have been producedchdutie GENOM simulation of the
event, using the information which gets stored in the STRKkba The bank is implemented as
word giving the number of tracks stored, followed by a sedkfixed length blocklets one per tracl
Because the number of tracks generated by a detailed GEN@®Mation can be large, and we al

3.8. Simulated Calorimeter Summary Bank 9

primarily interested in tracks which may have been recangtd using the drift chamber code, cuts will

be developed to reduce the number of tracks stored. At préseonly cuts employed are to check that
the beginning and end point vertices do not both lie beyoredptieshower, and to require the track to
have momentum greater than 30 MeV/c. Muon tracks are alvetgied. The number of tracks stored

is still large following this selection, and many are shaatks caused by the way GEANT steps through
the media of the NOMAD detector. More work is needed here the tine track selection, especially as
the size of the Monte Carlo DSTs is presently prohibitive.

The current implementation of the STKS bank contains sora@lolacks which will be mentioned. One
is that in choosing to store both charged and neutral “traickthe same bank, some waste of space is
produced due to the necessity to have fixed length blockietg@store different information in the two
cases. Specifically, for charged tracks the position andbdemtum at the first and last hits are stored
(for consistency with what is stored for reconstructedisqcwhereas for neutrals this information is not
present.

3.8 Simulated Calorimeter Summary Bank

The SCAS bank is a list of calorimeter cells which have seergndeposition during the GENOM

simulation of the event, using the information which getsest in the RCAL bank. The bank is imple-
mented as a word giving the number of cells stored, followga@ Iseries of fixed length blocklets one
per cell. Users should be aware that the spatial informatiored in this bank is an offset relative to the
centre of the relevant cell, as is the case in the RCAL bank.

The scheme for handling Monte Carlo calorimetric informatis still rather rudimentary. Users are
invited to suggest more appropriate information to be store

3.9 FZ Header

When the DST structure is output to a separate FZ file, thetieyW EBRA structure has associated
with it the same FZ header that the full phasel and phase@wtewtilised. Thus the user has available
the words stored there, such as the run and event numberse ey be accessed transparently when
reading a DST file using, for example, the /NDEVENT/ commoucklused in recon and camel, into
which the header is unpacked upon reading in the event. Thard event number may be obtained in
this way, for example, which is why these words do not appeglicitly in the DST bank structure.

Access functions are provided in the DST library for retngnivords commonly required from the FZ
header. See the following chapter for more details.

3.10 Alternative ECAL clustering of Gary Feldman

The alternative ECAL clustering of Gary Feldman has beeri@mpnted in the following way. For con-
venience, these objects, which consist of clusters ageddia a drift chamber track or an unassociated
cluster just as in the case of the “official” clustering in thatch engine, have been identified as belong-
ing logically to a subdetector of name FEL and identifier 1e® pointers to subdetector blocklets
which appear at the top of the MAS bank have been extended (poli&ter 10 is reserved for the silicon
prototype, and 12 and 13 are discussed in the next sectiolipwing this pointer the user will arrive at
blocklets with ID either 1101 (for cluster associated to & dhamber track), 1104 (for a cluster which
has been associated to a neutral HCAL clustse]f associated to a standard ECAL cluster), 1109 (for a
cluster associated to a standalone neutral HCAL clusteciwibnot itselfassociated to a standard ECAL

10 Chapter 3. The DST Structur

cluster, or 1111 (for an unassociated neutral cluster)higway, the tools which are used to access
formation for the standard match objects can be used to siticesalternative clusters in an analogo
way.

If the drift chamber track to which a charged cluster is aisged is actually an electron which has :
associated bremsstrahlung strip, the cross-referennfogniation giving which objects form the brer
strip is included in the 1101 blocklet, which becomes vdeidéngth.

Note that the use of the identifier 1104 is different betwe&T Dersion v7r2 and version v7r3 and tl
present version. In v7r2, it referred to an unassociatesdsione Feldman ECAL cluster, while in tF
later versions identifier 1111 is used to better reflect itamrgy. In the present version, 1104 refers
clusters which have been matched to those neutral HCALerkisthich are themselves matched tc
standard ECAL cluster, as explained above. It is the intttdn of matching results for Feldman ECA
clusters to neutral HCAL clusters which has necessitatisctttange, and users should be careful to t:
into account the change in meaning.

The make switch DST FELDMAN which was present in versionlv@ource code to build a libran
incorporating this alternative clustering is not used teraersions and can be omitted.

3.11 Extrapolator information

In version 1 of the DST library, extrapolator informationraference planes for PRS, CAL, HCAL an
the two stations of the muon chambers was only stored if theiqular subdetector matched to a dr
chamber track. In the present library, extrapolator infation is stored for all charged tracks if availabl
and appears as a MAS blocklet with identifier 1201 (using tetiéctor” 12 to denote the extrapolatol
The absence of this blocklet when blocklet 101 is presennimlgect indicates that no extrapolat
information was stored for this track (strictly speakingttmo TX/TXD structure was present in th
phase2 output for this track).

3.12 Padova Bremsstrahlung Strip

In this version of the DST (from v7r2 onwards in fact) the RadBremsstrahlung Strip algorithm outpt
is available for the first time. For those electron trackschitdre found to have emitted bremsstrahlur
a blocklet of type 1301 is added to the MAS bank. This is antes@ay of the information in the DMBR
bank which is produced by the algorithm at the phase 2 levieé detailed contents of the blocklet cz
be found in chapter 5. See also the note on bremsstrahlungtafgs below.

3.13 Notes on bank contents

3.13.1 Omissions

If words in the present DST are not filled, the most commonaedsr this is that the relevant word
containing the information are not present in the curremispli and phase2 ZEBRA structure produc
by recon.

A more detailed description of what is missing can be founGlapter 7.
Where words have not been filled, the following conventios Ieen adopted:

e Integers and floating words which are necessarily positivéhbir context have been given th
value integer -999 or floating -999.0.

3.13. Notes on bank contents 11

e Integers and floating words which can have a sign have been galue integer 0 or floating 0.0.

Where this has been done at the DST level, it is indicated énbdink document (please report any
omissions which are noticed, so that the bankdoc can be madeancurate). Note, however, that when
a value is notionally available in the phasel and phase2 Z&E&Ricture, its value has been preserved
in the DST. Therefore, if in fact it was not filled by the phase®le, the convention used by that code
must be ascertained in order to understand the DST contents.

3.13.2 Track lengths

With the present version of the DST, track lengths when miteisethe bankdoc are filled - this was not
the case with releases earlier than v7r2.

3.13.3 Bremsstrahlung algorithms

Users should be aware that there are resultisrebtypes of bremsstrahlung algorithm stored on the DST.

Information for the so-called “Padova” Bremsstrahlungoaitihm will be found in MAS blocklets of ID
1301. Information for the algorithm of Gary Feldman will lmuhd in MAS blocklets of ID 1101, with
some cross-referencing information in MAS blocklets of IDL1. Finally, some words relating to the
algorithm which is present in the phase 2 calorimeter clirgecode itself (specifically icalgamma.q
can still be found in the 404 MAS blocklet. These three sefafofmation should not be confused.

Chapter 4: Access Functions

Access functions to the DST ZEBRA structure are providedrifento ease its use for both C ar
FORTRAN programmers.

The advantage of using access routines is that any analydes that the user writes is in principl
immune to changes in the underlying ZEBRA structure. Whérect navigation of the structure i
performed, changes to this structure must be reflected ingefsato the user code, requiring both mc
work for the user and a heavier reliance on an up-to-date baokmentation (which of course shou
be available!).

For the above reasons, use of the access routines providedhei DST package ikighly recom-
mended Suggestions for further access routines that should bédad can be made, although tf
number of further versions of the NOMAD DST library to be puodd is probably rather limited at thi
point in the experiment.

Two packages of access code are available to the user, oamplet along with the dst library, and
second, “dstaccess”, developed independently [2]. Theples which are given in this document ref
to the former.

In the following discussion, some examples are given exampmbers. The code for these examp
can be found in the doc subdirectory of the dst source, erghbBers to adopt them as templates for th
own programs.

4.1 Access routines for C Programmers

4.1.1 Navigating the structure in C

The complete DST ZEBRA structure has been mapped onto pomdig C structures, in order t
allow a C programmer to navigate the structure. The scherad fmlows that outlined in the util
documentation, using macros passed to the C preprocessax&mple, the DST source code contail
amongst others, the macros

REFERENCE_FROM_LINK(Dst, "DST ")

REFERENCE_FROM_REFERENCE (Dst, Mas, "MAS ", FirstMas)
REFERENCE_FROM_REFERENCE (Mas, Mas, "MAS ", Next)

which, upon generation of the library, makes available timefions
_Dst DstReferenceFromLink(int Ldst)

_Mas DstFirstMasReference(_Dst Dst)

_Mas MasNextReference(_Mas Mas)

In addition, some top entry access has been provided to tAeb@agks, in the form of functionBstRe-
ference to provide a pointer, and the integer functiostLink , to provide a link to the ZEBRA bank.
Each C structure representation of a bank has an associaieiptype. As can be seen from tf
functions above, the pointer to the DST bank structure haes §st, to a MAS bank structuréMas and
so on. In order to gain access to these pointer types, thedadlledstbanks.hshould be incorporatec
into your C source file. The include figstgen.hprototypes the navigation routines mentioned abc
and in fact includesistbanks.h

Navigation through the banks with C can be illustrated wittne examples.

12

4.1. Access routines for C Programmers 13

Suppose one wants to loop through the MAS banks. This coulachi&ved with the following code
fragment:

#include "dstbanks.h"

#include "dstgen.h"

Dst Dst;
Mas Mas;

Dst = DstReference();
for (Mas = DstFirstMasReference(Dst); Mas; Mas = MasNextReference(Mas))
{

<Do something with this MAS bank>

Having obtained the pointer to a particular MAS bank (thagiparticular object, or line, in the match
table), it is then necessary to access the subdetectorléiedontained in this bank. An integer function
MasBlocklet is provided to test whether a blocklet of a particular typavailable.

Example 1 If the information desired comes from a muon matched to & dnidmber track (blocklet
identifier 501), the above code fragment could become

#include "dstbanks.h"

#include "dstgen.h"

void examplel(void)
{

_Dst Dst;

_Mas Mas;

printf (" Calling EXAMPLE1 ...\n");

Dst = DstReference();
for (Mas = DstFirstMasReference(Dst); Mas; Mas = MasNextReference(Mas))
{
if (MasBlocklet(Mas, 501))
{
printf ("Found blocklet 501. Do something with it.\n");

As can be seen, the functidiasBlocklet returns a non-zero value when the specified blocklet exasts f
this object, and zero otherwise.

4.1.2 Low-level Access to Bank Contents in C

For those users who desire access at the individual word tewbe C structure bank representation,
appropriate access routines are provided. At the risk ofieldly names, these have been implemented

14 Chapter 4. Access Function

using a naming scheme which can be deduced from knowleddpe dfank name and the variable nar
within the structure. The variable names are those givemei@ EBRA bank documentation for the DS
and these names are case sensitive.

Examples will best illustrate the idea. Suppose one wishebtain the number of reconstructed vertic
stored in the RVXS bank. From the bank doc, the listed vegiaaime iNVert, and is an integer. By
combining the bank name, with the first letter capitalisBaxs, with the variable name, we get th
access function nanfevxsNVert. Thus one might write

#include "dstbanks.h"

#include "dstgen.h"

_Dst Dst;

_Rvxs Rvxs;

int nvert;

Dst = DstReference();

Rvxs = DstRvxsReference(Dst);

nvert = RvxsNVert (Rvxs);

Example 2 Suppose one wishes to loop through these vertices and pitithe z position. To do this
the access routine takes as an additional argument thex"infiéhe desired vertex (i.e. an integer in tt
range 1 to the number of vertices) within the bank. The code

#include "dstbanks.h"
#include "dstgen.h"

void example2(void)

{
_Dst Dst;
_Rvxs Rvxs;
int nvert, 1ij;
float Z;
printf(" Calling EXAMPLE2 ...\n");
Dst = DstReference();
Rvxs = DstRvxsReference(Dst);
nvert = RvxsNVert (Rvxs);
if (nvert)
{
for (i = 1; i <= nvert; ++i)
{
z = RvxsZ(Rvxs, 1i);
printf("z position of vertex is %f\n", z);
}
}
¥

4.2. Access for FORTRAN Programmers 15

should do the job.

Names of access functions to the information in the bloskiétthe MAS banks are constructed along
similar lines, except that the names of the subdetectorshyhertain to a given blocklet are included
in the function name. As an example, functions accessingeklgt with ID 101 (drift chamber track
information), have namedasDchDchxxxxxwherexxxxx is the variable name as given in the bank doc.
For blocklet ID 501 (information from a muon to drift chambeatch) the name would BdasMuoD-
chxxxxx. It can be seen that the rule is to replace the “subdetectariemical ID, in the range 1 to 13,
with the three letter character identifier, drawn from the{&ch, Trd, Prs, Cal, Muo, Sci, Vet, Fca,
Hca, (Sit), Fel, Ext, Bre}.

4.1.3 Higher-level Access to Bank Contents in C

Since it may be inefficient in many cases to call access fonstthat return a single word from the
DST structure, there is a case for providing higher levekascoutines to return blocks of information.
This functionality is provided through the “dstaccess” kgge, which is provided as part of the present
library. For further information, the reader is referredte appropriate documentation [2]. The examples
mentioned in that document may also be found in the source fowdhe present library, in the directory
/nomad/src/dst/v7r4/doc. The files have been renamed dgainp and examplel2.c.

4.2 Access for FORTRAN Programmers

FORTRAN programmers have the option of direct navigatiothefbanks in ZEBRA common, or of
using access routines. If using the former method, note eisaken that the contents of the banks
may change with the version of the DST, necessitating chémdfee user code also. For this reason,
it is highly recommendedthat consideration be given to using access routines whalmdewith the
ZEBRA bank contents. If the direct navigation method is emsthen it is recommended that the
parameters which may be obtained by including theddiparams.incin the source program are used.
This is now described.

4.2.1 The include file dstparams.inc

In order to aid in the writing of robust code to fill and use th8T) an include file is provided which
contains position parameters of all data words in all baBlsinclusion of this include file in user code,
and by using the parameter name to refer to the offset of angixard in a bank rather than the actual
integer itself, the user will gain a considerable degreerofgetion against any changes to the bank
structure of the DST which do not involve the removal of woedsshuffling between banks. As this
include file is generated automatically from the bankdocafgiven DST version using an awk script,
the only onus on the user is to ensure the use of the corresibwenf the file for the version of the DST
being read.
Here is a fragment of thd@stparams.incfile
INTEGER IRvxsNVert)

IRvxsId ,

IRvxsType s

TRvxsNChgd ,

IRvxsNNeut .

+ o+ o+ o+

16 Chapter 4. Access Function

+ IRvxsNUnused N
IRvxsX

PARAMETER (IRvxsNVert =
IRvxsId =
IRvxsType =
IRvxsNChgd =
IRvxsNNeut =
IRvxsNUnused =
IRvxsX =

+

+ + + + + o+
O WN R

Instead of obtaining the number of reconstructed vertiaés tive code
NVERT = IQ(LRVXS+1)

one would use
NVERT = IQ(LRVXS+IRvxsNVert)

which will remain correct even if the position of the word olgas for any reason.
To access the x positions of the vertices, another featutieeoinclude file may be used. Consider t
following extract fromdstparams.inc

INTEGER NIWHRVXS, NFWHRVXS, NIWPRVXS, NFWPRVXS

PARAMETER (NIWHRVXS= 1,NFWHRVXS= O,NIWPRVXS= 5,NFWPRVXS= 4)

INTEGER NWHRVXS , NWPRVXS
PARAMETER (NWHRVXS = NIWHRVXS + NFWHRVXS)
PARAMETER (NWPRVXS = NIWPRVXS + NFWPRVXS)

The parameteNWHRVXS can be seen to contain the number of header words in the RVHIS bad
the parametelNWPRVXS to contain the number of data words per vertex. These can piget when
writing the code in the following way
NVERT = IQ(LRVXS+IRvxsNVert)
IF (NVERT.GT.O) THEN
DO I = 1,NVERT
IOFFSET = NWHRVXS + (I-1)*NWPRVXS
X = Q(LRVXS+IOFFSET+IRvxsX)
ENDDO
ENDIF

This is more robust than the alternative
NVERT = IQ(LRVXS+1)
IF (NVERT.GT.O0) THEN
DO I = 1,NVERT
IOFFSET = 1 + (I-1)%9
X = Q(LRVXS+IOFFSET+5)
ENDDO
ENDIF

4.2. Access for FORTRAN Programmers 17

and would not have to be changed if the number of header wotttie @osition of the word containing x
were to change. It is hoped that the advantages of using thaenpters irdstparams.incare clear. The
parameter names are verbose but quite logical, and alsmdld teadability of the code.

The filedstparams.incmay be found in /nomad/src/dst/v7r4/include, should thex wssh to browse it
for further possibilities.

4.2.2 Direct Navigation with FORTRAN

Some examples of direct navigation will be given, to illagérhow it can be done.

Example 3 To loop through the RVXS bank, printing the z position of tleeanstructed vertices (as

was illustrated with C above), could be done with the follogvicode fragment (refer to the bank doc

for the bank structure). Note the use of the paramdfRvgsNVert andIRvxsZ from the include file
dstparams.incjust described.

SUBROUTINE EXAMPLE3

Koo Code used in example 3 of the documentation
IMPLICIT NONE

*.

#include "nomzeb.inc"

#include "nkunit.inc"

#include "dstcom.inc"

INTEGER LDST, LRVXS, NVERT, IOFFSET, I
REAL Z

WRITE(KUNIT6,1000)
Koo Access the DST bank if it exists

LDST = LQ(LNOMAD-6)
IF(LDST.GT.0) THEN

........... Access the RVXS bank if it exists

LRVXS = LQ(LDST-2)
IF(LRVXS.GT.0) THEN

.............. Get the number of vertices in list

NVERT = IQ(LRVXS+IRvxsNVert)
IF(NVERT.GT.0) THEN

................. Loop through the vertices, printing z

18 Chapter 4. Access Function

I0FFSET = NWHRVXS

DO I = 1,NVERT
Z = Q(LRVXS+IOFFSET+IRvxsZ)
WRITE(6,1001) Z
I0FFSET = IOFFSET + NWPRVXS

ENDDO

ENDIF
ENDIF
ENDIF

RETURN
*.
1000 FORMAT(’ Calling EXAMPLE3 ...’)
1001 FORMAT(’ z position of vertex is ’,F8.3)
*.
END

Example 4 To loop through the MAS banks, finding only those containinfpimation on muons
matched to drift chamber tracks, is more complicated (tkésrgple was also given for C above). He
we check if there is information for a muon matched to a dhfirmber track, and if so, print its x and
position at station 1.

SUBROUTINE EXAMPLE4

oo, Code used in example 4 of the documentation
IMPLICIT NONE

* .

#include "nomzeb.inc"

#include "nkunit.inc"

#include "dstparams.inc"

INTEGER LDST, LMAS, IMUO, IDBLOCK
REAL XSTAT1, YSTAT1

WRITE(KUNIT6,1000)
koo Access the DST bank if it exists

LDST = LQ(LNOMAD-6)
IF(LDST.GT.0) THEN

oo, Loop through the MAS banks

LMAS = LQ(LDST-3)
DO WHILE (LMAS.GT.0)

4.2. Access for FORTRAN Programmers 19

N Check the pointer to muon blocklet
Ko Non-zero means there is muon info

IMUO = IQ(LMAS+5)
IF(IMUO.GT.0) THEN

Ko Check the Identifier of this blocklet

IDBLOCK = IQ(LMAS+IMUO)
IF (IDBLOCK.EQ.501) THEN

Ko e Found muo-dch blocklet, print x and y at station 1

XSTAT1 = Q(LMAS+IMUO+IMasMuoDchXS1)
YSTAT1 = Q(LMAS+IMUO+IMasMuoDchXS2)
WRITE(6,1001) XSTAT1, YSTAT1

ENDIF
ENDIF
LMAS = LQ(LMAS)

ENDDO
ENDIF

RETURN
*,
1000 FORMAT(’ Calling EXAMPLE4 ...°)
1001 FORMAT(’ x,y position of muon station 1’,F8.3,1X,F8.3)
*.
END

4.2.3 Access Routines and FORTRAN

The examples given above can also be tackled with accessdusicThe C access routines which have
been described in section 4.1 have been rendered FORTRAdblealising the cfortran package. Since
the C access routines use pointers to the C structures tgatayone should include the fig@inter.inc
and declare the relevant variables as t@INTER in the FORTRAN code.

Example 5 First let us recast the loop through the reconstructedoesrtiising this method.
SUBROUTINE EXAMPLES

oo Code used in example 5 of the documentation

20

IMPLICIT NONE
* .
#include "pointer.inc"
#include "nkunit.inc"
*,
POINTER DST, fDstReference,
+ RVXS, fDstRvxsReference
INTEGER NVERT, fRvxsNvert, I
REAL Z, fRvxsZ

WRITE(KUNIT6,1000)
*ooooo. Access the DST bank if it exists

DST = fDstReference()
IF (DST.NE.O) THEN

Ko Access the RVXS bank if it exists

RVXS = fDstRvxsReference(DST)
IF(RVXS.GT.0) THEN

Ko Get the number of vertices in list

NVERT = fRvxsNVert (RVXS)
IF(NVERT.GT.0) THEN

Ko Loop through the vertices, printing z

DO I = 1,NVERT
Z = fRvxsZ(RVXS, I)
WRITE(6,1001) Z
ENDDO
ENDIF
ENDIF
ENDIF
*,
1000 FORMAT(’ Calling EXAMPLE5S ...’)
1001 FORMAT(’ z position of vertex is ’,F8.3)
*.
RETURN
END

Chapter 4. Access Function

Example 6 Here is an example of code to access the muon-drift chambehnmdormation using this

method.

4.2. Access for FORTRAN Programmers 21

SUBROUTINE EXAMPLE6
oo, Code used in example 6 of the documentation
IMPLICIT NONE
*,
#include "pointer.inc"
#include "nkunit.inc"
*,
POINTER DST, fDstReference,
+ MAS, fDstFirstMasReference, fMasNextReference
INTEGER fMasBlocklet
REAL fMasMuoDchXS1, fMasMuoDchYS1
WRITE(KUNIT6,1000)

DST = fDstReference()
IF (DST.NE.O) THEN

MAS = fDstFirstMasReference (DST)
DO WHILE (MAS.GT.0)

IF(fMasBlocklet (MAS, 501).GT.0) THEN
WRITE(6,1001) fMasMuoDchXS1(MAS), fMasMuoDchYS1(MAS)
ENDIF
MAS = fMasNextReference (MAS)
ENDDO
ENDIF

RETURN

1000 FORMAT(’ Calling EXAMPLE6 D)
1001 FORMAT(’ x,y position of muon station 1 is’,F8.3,1X,F8.3)

END

4.2.4 Higher-level Access to Bank Contents in FORTRAN

For the same reasons as were discussed in the context of §&sdanetions, higher level access routines
are provided to return blocks of information. Such accessasided through the “dstaccess” package

[2], which is available in the present DST library.
An alternative set of high level FORTRAN access routinewimilar functionality is described below.

The existence of the two schemes is historical. They boththesssame common block for storage of

22 Chapter 4. Access Function

variables, “dstaccess.inc”. The FORTRAN user should drlybehoose to settle on one of these schen
and stick to it.

In both schemes, the information requested is placed intonann block which enables the user
access the individual words by name

The names of words in the commons are constructed strictty fhe name of the bank or blocklet (i
the MAS bank case) and the name of the variable given in thk daoumentation. For example th
X position of a vertex in the RVXS bank can be referenced tinothe (real) variable RVXS X. The
number of hits on a drift chamber track (blocklet MASDCHDGHthe MAS bank) can be reference
through the (integer) variable MASDCHDCH NHits. Note tisatce these are FORTRAN common
the case of the letters in the name is irrelevant (RVXS' X amd x should work).

In addition to the FORTRAN access routines provided by thetdidcess” package [2], three addition
routines are provided in the library, constituting the setecheme mentioned above. TVRSTGet-
MasBlock and DSTGetMasSubBlockare for use with the MAS bank information, while the thir
DSTGetBlockis for use with any of the other banks. These routines tale=targuments, as follows:

e Argument 1: an integer specifying whether the bank address will be peasa ZEBRA link (1),
or as a C pointer (2).

e Argument 2: the value of the link or pointer

e Argument 3: For the MAS bank, the blocklet ID of the match pair requiredy (6501 for muon
chambers matched to drift chambers). For all other banksgnttex of the blocklet required. Not
that if the bank has header info, setting this argument to zauses the header information to |
returned.

To use these routines, the user should include in the catioutg the include filelstcom.ing and in

addition the include filelstaccess.incdstcom.incprovides integer parameters which map to the ma
pair blocklet IDs, so that one can refer MV ASMUODCH rather than 501 when making the call |
DSTGetMasBlock dstaccess.incontains the common block into which the individual DST woeade

returned.

Examples will make all of this much clearer.

Example 7 Suppose that one wishes to loop through all of the verticéseiRVXS bank, and that on
works with the ZEBRA links to the bank. The following code @be used:

SUBROUTINE EXAMPLET7
oo, Code used in example 7 of the documentation

IMPLICIT NONE
* .,
#include "nkunit.inc"
#include "dstcom.inc"
#include "dstaccess.inc"

INTEGER LRVXS, RVXSREF, I
REAL X, Y, Z

4.2. Access for FORTRAN Programmers 23

WRITE(KUNIT6,1000)
Koo Get the link to the RVXS bank

LRVXS = RVXSREF()
IF (LRVXS.GT.0) THEN

Koo Unpack the bank header to get the number of vertices
CALL DSTGetBlock(1l, LRVXS, 0)
Ko Now loop through the vertices if there are any
IF (Rvxs_NVert.GT.0) THEN
DO I = 1,Rvxs_NVert

CALL DSTGetBlock(1l, LRVXS, I)

X = Rvxs_X
Y = Rvxs_Y
Z = Rvxs_Z

WRITE(KUNIT6,1001) I, X, Y, Z
ENDDO
ENDIF
ENDIF
RETURN
iOOO FORMAT(’ Calling EXAMPLE7 ...’)
1001 FORMAT(’> Vertex ’,I3,” X = ’,F8.3,” Y = ’,F8.3,” Z = ’,F8.3)

*,
END

Example 8 If instead of using ZEBRA links in the last example, one usasters, the code becomes
the following:

SUBROUTINE EXAMPLES
koo Code used in example 8 of the documentation
IMPLICIT NONE

*.
#include "nkunit.inc"

24 Chapter 4. Access Function

#include "dstcom.inc"

#include "dstaccess.inc"

*

POINTER DST, fDstReference, RVXS, fDstRvxsReference
INTEGER I

REAL X, Y, Z

WRITE(KUNIT6,1000)

........ Access the DST bank if it exists

DST = fDstReference()
IF (DST.GT.0) THEN

........... Access the RVXS bank if it exists

RVXS = fDstRvxsReference(DST)
IF (RVXS.GT.0) THEN

.............. Unpack the bank header to get the number of vertices
CALL DSTGetBlock(2, RVXS, 0)
.............. Now loop through the vertices if there are any
IF (Rvxs_NVert.GT.0) THEN
DO I = 1,Rvxs_NVert

CALL DSTGetBlock(2, RVXS, I)

X = Rvxs_X
Y = Rvxs_Y
Z = Rvxs_Z

WRITE(KUNIT6,1001) I, X, Y, Z
ENDDO
ENDIF
ENDIF
ENDIF

RETURN

1000 FORMAT(’ Calling EXAMPLE8 ...’)

4.2. Access for FORTRAN Programmers 25

1001 FORMAT(’ Vertex ’,I3,” X = ’,F8.3,” Y = ’,F8.3,’ Z = ’,F8.3)
*
END

Now for two examples using the MAS banks.

Example 9 This code performs the same function as does that of examplat&ining information on
muon track matched to drift chamber track.

SUBROUTINE EXAMPLES

oo, Code used in example 9 of the documentation
IMPLICIT NONE

*,

#include "nomzeb.inc"

#include "nkunit.inc"

#include "dstcom.inc"

#include "dstaccess.inc"

INTEGER LDST, LMAS, IMUO, IDBLOCK
REAL XSTAT1, YSTAT1

WRITE(KUNIT6,1000)
oo Access the DST bank if it exists

LDST = LQ(LNOMAD-6)
IF(LDST.GT.0) THEN

ko Loop through the MAS banks

LMAS = LQ(LDST-3)
DO WHILE (LMAS.GT.0)

N Check the pointer to the muon blocklet
Ko Non-zero means that it exists

IMUO = IQ(LMAS+5)
IF (IMUO.GT.0) THEN

................. Check the Identifier of this blocklet
Ko Note that parameter MASMUODCH (in dstcom.inc) is 501

IDBLOCK = IQ(LMAS+IMUQ)
IF (IDBLOCK.EQ.MASMUODCH) THEN

26 Chapter 4. Access Function

P Found muo-dch blocklet, print x and y at station 1

CALL DSTGetMasBlock(1, LMAS, MASMUODCH)
XSTAT1 = MasMuoDch_XS1

YSTAT1 = MasMuoDch_YS1

WRITE(6,1001) XSTAT1, YSTAT1

ENDIF
ENDIF
LMAS = LQ(LMAS)

ENDDO
ENDIF

RETURN
* .,
1000 FORMAT(’ Calling EXAMPLE9 ...’)
1001 FORMAT(’ x,y position of muon station 1’,F8.3,1X,F8.3)
* .,
END

Example 10 Finally, the previous example using pointers.
SUBROUTINE EXAMPLE10

oo, Code used in example 10 of the documentation

IMPLICIT NONE
* .,
#include "pointer.inc"
#include "nkunit.inc"
#include "dstcom.inc"
#include "dstaccess.inc"
* .
POINTER DST, fDstReference,
+ MAS, fDstFirstMasReference, fMasNextReference
INTEGER fMasBlocklet

WRITE(KUNIT6,1000)

DST = fDstReference()
IF (DST.NE.O) THEN

MAS = fDstFirstMasReference(DST)

4.3. Utility Routines 27

DO WHILE (MAS.GT.O)

IF (fMasBlocklet (MAS, MASMUODCH).GT.0) THEN
CALL DSTGetMasBlock(2, MAS, MASMUODCH)
WRITE(6,1001) MasMuoDch_XS1, MasMuoDch_YS1

ENDIF

MAS = fMasNextReference (MAS)
ENDDO
ENDIF

RETURN
*,
1000 FORMAT(’ Calling EXAMPLE10 ...’%)
1001 FORMAT(’ x,y position of muon station 1 is’,F8.3,1X,F8.3)
*
END

4.3 Utility Routines

Some routines to make use of the DST structure easier ar&pthand will be described here. The list
will grow with time.

The following C routines are also FORTRAN callable by prepieg an f to the routine name, and
including pointer.inc in the calling FORTRAN code. C programmers should remembéndiude the
file dstgen.hin their source code.

4.3.1 General utility routines

o int *MasBlocklet('Mas mas, int blockid) Returns a non-zero value if the object (MAS bank)
pointed to bymascontains a blocklet with identifidslockid (in fact returns a pointer to the block-
let, of type MasXxxYyy whereXxx is the subdetector supplying the information, €lgd , and
Yyy is the seed subdetector). Otherwise returns 0. This prevaédeonvenient way to check
whether the MAS bank contains information from the subdeteof interest. TECHNICAL
NOTE: the type of the pointers which are used internally y @structures which map to the
MAS bank blocklets changed from DST version v7rl to v7r2. énsion v7rl, the pointers were
of the type"MasXxx, i.e. the pointer was independent of the seed subdeteatdnédblocklet.
This was possible because unions were used in defining theu@wes. In versions v7r2 on-
wards, use of unions had to be abandoned for a technicalrrerdsen blocklets could become
variable in length, and as a consequence there are now teparaters to each different type of
blocklet, of the form MasXxxYyy, and the C structures have changed in internal form. Those
users who in their C code directly accessed the members sé tsteuctures rather than use the
access routines provided by the package will find that thew bachange their code. This change
was unfortunately unavoidable.

28 Chapter 4. Access Function

e int NumReconTracks(void) Returns the total number of reconstructed tracks in thetewdn
tained by counting the Mas banks containing 101 blocklets.

int PrimaryTrack('Mas mas) Returns 1 if the object pointed to Ioyasis attached to the priman
vertex (can be charged or neutral), and 0 otherwise.

int PrimaryChargedTrack('Mas mas) Returns 1 if the object pointed to gasis charged and
attached to the primary vertex, and 0 otherwise.

int PrimaryNeutralTrack('Mas mas) Returns 1 if the object pointed to byasis neutral and
attached to the primary vertex, and 0 otherwise.

Functions are provided to return certain quantities fromR header of the event. The FZ header
a DST tape is presently identical to that on the full recorpoutape, so in principle this information i
already readily available. For the FORTRAN programmer,abemon /NDEVENT/ provided by util
may be accessed. For the C programmer, inclusion of theeatér filerzio.h will allow the structure
pointed to byEVT headerto be used. For convenience, the DST library contains theWolg C access
routines for accessing some of the header words. All may bedcom FORTRAN by prepending the
function name with “f” and declaring the resulting functias INTEGER.

int DstRunNumber() Returns the current run number.

int DstEventNumber() Returns the current event number.

int DstTrigMask() Returns the undelayed trigger mask (as a bitted word, intwbits 11 to 16
contain the relevant information). This function simpleashe util function RzGetTriggerMask(

int DstTrigMaskDel() Returns the delayed trigger mask (as a bitted word, in whitsh27 to 32
contain the relevant information). This function simplyeaghe util function RzGetTriggerMask

Int().

int DstOnlineError() Returns the online error word.

int DstOfflineError() Returns the offline error word.

The following two routines are provided to aid calculatidithee magnitude and error of the 3-momentu
of an object given the components. Whilst the first is triviek second may be of use when the upj
diagonal of the covariance matrix fop,(p,, p.) is available. It uses the routirieack cartesian from
the extrapolator package.

o DstPxPyPzToP(float *p)Returns the magnitude of the 3-momentum given a pointeregavitrd
containingp,, (and assuming the 3 components are stored contiguously).

e DstCovPxPyPzToEP(float *p, float *ep)Returns the error on the magnitude of the 3-moment
given pointers to the word containing and the word containing’ov(p, p,) (@and assuming the
3 momentum components, and the 6 upper diagonal elemerite obvariance matrix, are store
contiguously, as they are on the DST).

4.3. Utility Routines 29

4.3.2 Extended access routines

Also available are some routines to return useful quastgigch as momentum and error on momentum
as thoughthese quantities were stored in the DST structure (they mefect been removed from the
structure from DST v7rl onwards as they are calculable flequantities which are stored there). The
listis (all are of typefloat):

e MasDchDchPB("Mas Mas)Momentum of track at beginning vertex

o MasDchDchEPB('Mas Mas)Error on momentum of track at beginning vertex

MasDchDchPF("Mas Mas)Momentum of track at first hit

MasDchDchEPF("Mas Mas)Error on momentum of track at first hit

MasDchDchPL('Mas Mas)Momentum of track at last hit

MasDchDchEPL('Mas Mas)Error on momentum of track at last hit

MasDchDchPE('Mas Mas)Momentum of track at end vertex

MasDchDchEPE(Mas Mas)Error on momentum of track at end vertex

StksPB (" Stks Stks, int i)Momentum of simulated tradkat beginning vertex

StksPF ('Stks Stks, int i)Momentum of simulated tradkat first hit

StksPL (' Stks Stks, inti)Momentum of simulated tradkat last hit

e StksPE ('Stks Stks, inti)Momentum of simulated tradkat end vertex

4.3.3 Access routines for packed words

As some of the words in the DST structure are packed using Xasaultiplicative factors, routines are
provided which look like the standard access routines tg#eked word as a whole, but which extract
particular quantities from that word. By inspecting the ldoc (or chapter 5) for a description of the
contents of the relevant words, the function of the follayvirerbosely named access routines should
become self-evident.

For unused hits around a vertex in the RVXS bank:

e int RvxsNUnusedU15 ('Rvxs Rvxs, inti)
e int RvxsNUnusedU10 ('Rvxs Rvxs, inti)
e int RvxsNUnusedUO05 ('Rvxs Rvxs, inti)
e int RvxsNUnusedY15 ("Rvxs Rvxs, inti)
e int RvxsNUnusedY10 ('Rvxs Rvxs, inti)
e int RvxsNUnusedYO05 ("'Rvxs Rvxs, inti)

e int RvxsNUnusedV15 ('Rvxs Rvxs, inti)

30

For packed muon chamber hits in the 101 blocklet:

e int RvxsNUnusedV10 ("Rvxs Rvxs, inti)

e int RvxsNUnusedVO05 ("'Rvxs Rvxs, inti)

e int MasDchDchMuHitsX1 ("Mas Mas)

int MasDchDchMuHitsX2 (‘Mas Mas)

int MasDchDchMuHitsY1 (‘Mas Mas)

int MasDchDchMuHitsY2 (‘"Mas Mas)

int MasDchDchMuHitsMuV ('Mas Mas)

int MasDchDchMuHitsNFX1 (‘Mas Mas)

int MasDchDchMuHitsNFX2 (‘Mas Mas)

int MasDchDchMuHitsNFY1 (‘Mas Mas)

e int MasDchDchMuHitsNFY2 (‘"Mas Mas)

Chapter 4. Access Function

For packed drift chamber veto and forward and backward bita track in the 101 blocklet:

int MasDchDchNDcVHitBU50 (‘Mas Mas)

int MasDchDchNDcVHIitBY50 (‘Mas Mas)

int MasDchDchNDcVHitBV50 (‘Mas Mas)

int MasDchDchNDcVHitBU25 (‘Mas Mas)

int MasDchDchNDcVHIitBY25 (‘Mas Mas)

int MasDchDchNDcVHitBV25 ('Mas Mas)

int MasDchDchNDcVHIitFU50 (‘Mas Mas)

int MasDchDchNDcVHItFY50 ('Mas Mas)

int MasDchDchNDcVHitFV50 (‘Mas Mas)

int MasDchDchNDcVHIitFU25 (‘Mas Mas)

int MasDchDchNDcVHIitFY25 (‘Mas Mas)

int MasDchDchNDcVHIitFV25 (‘Mas Mas)

int MasDchDchNDcVHitBTube (‘Mas Mas)

int MasDchDchNDcVHitFTube (‘Mas Mas)

4.3. Utility Routines 31

4.3.4 Routines for backwards compatibility Chapter 5: The Banks in More Detall

The following are provided for backward compatibilty. Therd names were changed in MAS blocklet The general policy in filling the DST is to take as much infotiom as possible exactly “as is” fron
501 in going from versions v1r0 to v7rl of the library, in orde be more consistent with other blocklets the phase2 ZEBRA structure. The contents of the vast mgjofithe words can be deduced from ti
(basically the letterdu were dropped, e.gMasMuoDchXMuS1 becameMasMuoDchXS1). The information in the bankdoc. However, in some cases furtkpla@ation and clarification of what is i
functions below, which utilise the old form of the word, wilused return the new word. a word is required. In this chapter all words on the DST areritesd, in more detail than the bankdk

where necessary. For each word, the description includeslaration of whether the word is integer (|

o float MasMuoDchXMuS1 ('Mas Mas) or floating point (F).

o float MasMuoDchYMuS1 (‘Mas Mas) 51 The FZ Head
. e eader

o float MasMuoDchZMuS1 ('Mas Mas)
) The FZ Header that is present for all ZEBRA files throughootpiction is preserved and propagated
o float MasMuoDchXMusS2 ('Mas Mas) DST ZEBRA files as well. Therefore these words are availablesers along with the contents of tt
« float MasMuoDchYMusS2 (' Mas Mas) DST structure itself — indeed this is the way that most peoptain the run and event number, which &
not stored in the DST banks themselves.

o float MasMuoDchZMuS2 ('Mas Mas) Access to the information in the FZ header may be obtainedénod several ways.

o float MasMuoDchSIXMuS1 ('Mas Mas) e For a FORTRAN programmer, the include fildevent.incmay be used. This contains the cor

o float MasMuoDchSIYMuS1 (Mas Mas) mon bIocI§ /NDEVENT/, into‘which many of the words in the FZ Heahave been copied upo
standard input of an event with a program sucleasel For example, the run and event numbe

o float MasMuoDchSIXMuS2 (‘Mas Mas) are available in the wordRUN andIEVENT .

o float MasMuoDchSIYMuS2 ('Mas Mas) e Also for a FORTRAN programmer, the include fitelink.inc may be used (this is also obtaine

if the file nzbank.inc has been included). The wotdHEAD holds the ZEBRA link to the FZ
header, and words are obtained by referencing the 1Q ariiag thss link. For example, the rur
and event numbers via this method may be fountdQ(LHEAD+1) andIQ(LHEAD+2). All
header words can be accessed in this way.

For C programmers, the header fildo.h (from the util package) may be used. This provic
access to a structure pointed tolByT header. To get the run and event numbers, the appropr
members of that structur&VT header->run'number and EVT header->event number can
be accessed.

e A very limited subset of these words can be accessed usinglib&Fy access functions. Se
chapter 4 for more details.

There are two important event quality words, present in thén€ader of an event, which users shot
be aware of. These are

o |IQ(LHEAD+24) The so-called “online error” word. This will be non-zero ffere is raw data
missing in the event for some of the subdetectors. C progemsifollowing the prescription
above will find this word withHEVT header->online error.

e IQ(LHEAD+29) The so-called “offline error” word. This will be non-zero ke event has failec
the “density cuts” or if there have been problems in the magchrocess. Since in these cases f
reconstruction will not have been done but the event malyagtplear in the output data set, it
important to check this word. Its actual value conveys imfation on which condition caused it t
fail.

32

5.2. The DST bank 33

Bit O SetFailed the drift chamber veto cut.
Bit 1 SetFailed the cut on the number of drift chamber hits.

Bit 2 SetFailed the wire density cut.
— Bit 3 SetFailed the cut on the number of TRD hits.
— Bit 16 SetProblem with the matching process (for example, failed toecge).

Note that C programmers can currently find this word with tiepropriately nameVT header-
>online’stream (at least up to util v7r5). This is because the word was oaifyrearmarked for
another use, and has subsequently been appropriated. Acfamge in future util versions is
called for.

5.2 The DST bank

The DST bank is simply a hanger onto which the other banksaD®T structure are attached. As such,
it contains just one data word:

e \ersion The DST version number, a floating point number containirey wersion and release
number. (F)

The version number may be obtained using
(int) Version

The release number may be obtained with
(int) 10*(Version - (int) Version)

Remember when comparing the word itself with a known versiamber (e.g. 7.4) to be wary of
roundoff. It is better to extract the integer version anéask as above and look at those.

5.3 The EVS bank

The purpose of the EVS bank is to provide some global infoiomadn the event. Some of the infor-
mation, as pointed out below, is meant to be indicative omiganing that to make sophisticated cuts,
especially on the energy variables, the user is advisedcsacthe detailed information elsewhere on the
DST.

IndxPrim All words on the DST which are advertised as “indices” give thdex of an object

in another bank. If one considers the RVXS bank to consisttabie where each row contains
information on one reconstructed vertex, thedxPrim tells the user which row to look at in order
to find information on the primary vertex for the event. Ifsthiord is zero, there is no primary. (1)

e NVert This is simply the number of vertices in the event with motbne track emerging, with
the exception that the primary is always counted, even i&& dnly one track. Vertices may have
a charged or neutral track incident. The information is leté by examining the RVXS bank. (1)

NHang All reconstructed tracks with beginning vertex of type 9 evented. (1)

NChgd All charged tracks (MAS blocklets 101) from primary are ctach (1)

NNeut All neutral tracks (MAS blocklets 104) from primary are caéeah. (1)

34

Chapter 5. The Banks in More Deta

NCalUn All neutral CAL clusters (MAS blocklets 404) which are nottampanied by a neutra
track (MAS blocklet 104) are counted. (I)

NHcaUn All unassociated HCAL clusters (MAS blocklets 909) are dedn (1)

NTrigl Counts the number of in-time hits in plane 1 of the triggerntets. Since there is n
match done for the trigger counters, the hits in the DASC tmmekused. The time windows ar
taken from the RHST bank in the run header structure for thger. (1)

NTrig2 The same abITrigl only for trigger plane 2. (I)

NVeto Counts the number of in-time hits for the veto counters (tle@l” veto, not the first drift
chamber). Uses the information in MAS blocklets 701 and 107.

NCells Counts the number of calorimeter cells above thresholds theeinformation in the phase
DACA bank (no additional threshold above that used to fillERCA bank is imposed). (1)

NSlabsCounts the total number of HCAL slabs which are hit. This isiewed by accessing th
information in the DAHC bank and finding those slabs with rzeme energy deposition. (1)

NMuMat This word gives the number of “good” muons in the event. Itliedi by counting all
charged tracks in the event which have the wBrdbMu in the 101 blocklet (see below) set t
1.0. Note that this behaviour dfferentto that in version v7r1 of the DST, where the word had 1
nameNMuTrk and was filled by counting 501 blocklets rather than “good’bmsi This was alsc
the case for version v1r0 DSTs. Note that situations in wiichuons are flagged in this wor
should not be treated as “golden” dimuons on the present BSThe ambiguity treatment at tf
level of phase2 is not fully developed. (1)

NRemain The number of drift chamber hits which were left over aftacck reconstruction wa:
completed is stored, the information being taken from woodl he DDCH bank. (1)

Overflow This word is a copy of word 12 of the SEVT bank. For Monte Caxlergs, it flags the
condition that a buffer overflow during the GENOM processifighis event has caused informs
tion to be lost. (1)

NDcVeto The number of hits in the drift chamber veto chamber. Thisthadollowing three words
are used in performing the filtering during processing. Thsytaken from the correspondin
words in the BDCH bank. (1)

NDcHit The total number of (in-time) hits in all drift chambers. (1)

NDensity The wire density, multiplied by 1000. (I)

NTrdHit The total number of TRD hits. (I)

ECells The energy deposited in all the cells stored in the phasel/ADB¥&hk is summed. (F)
ESlabsThe energy deposited in all the scintillators stored in t#HQ bank is summed. (F)

Weight The Monte Carlo weight assigned to this event. Since no gitéras yet been made ¢
the production stage to combine event samples from differenerators into a single data set, tf
weight is always 1.0. (F)

5.4. The RVXS bank 35

5.4 The RVXS bank

The RVXS bank is essentially a summary in tabular form of tifermation in the VTX structure. All
vertices which are present in the VTX structure are presetité RVXS bank with one exception: end
point vertices (those with vertex type 10) aret stored except when there is a neutral associated to the
vertex — this happens in phase?2 at a low level and so some €ypertices may be found on the DST.

e NVert Indicates how many vertices are stored in the bank.
For each vertex, the following words are stored.
e |d The vertex identifier stored in word 20 of the VTX bank. (1)
e Type The vertex type stored in word 21 of the VTX bank. (I) Valid ¢égpare:

. 1 Primary vertex

. 2 Secondary

: 3 Decay (one track in, several out)
:4V0

: 5Brem

. 6 Scatter (one track in, one track out)
. 7 Delta Ray

: 8 Hard Scatter

: 9 Beginning (hanger)

: 10End

. 11 Neutral Hanger (do not appear on DST)
: 120ut

e NChgd Counts all charged tracks associated to the vertex (byhgopver the TRK banks). (1)
e NNeut Counts all neutral tracks associated to the vertex (by fappiver the TRK banks). (1)

e NUnusedUnused hits in the vicinity of the vertex. This is a packed aydilled as follows:

1000000*(No. Hits in box of size +- 15cm)

+ 1000*(No. Hits in box of size +- 10cm)

+ (No. Hits in box of size +- 5cm)

Each "No. Hits in box" = 100*(No. U Hits) (0-9)
+ 10x(No. Y Hits) (0-9)
+ (No. V Hits) (0-9)

In this context, a “box” of sizd extends in z a distandebefore and after the z position of the
vertex. For the other dimensions, a road of the same sizdirsede+!, oriented separately with
respect to each of the 3 orientations of the wires (U,Y,V)thar purpose of counting unused hits
within the road. Access routines to unpack the different ponents of this word are provided -
see section 4.3.3. (I)

36 Chapter 5. The Banks in More Deta

e X The x position of the vertex. (F)
e Y They position of the vertex. (F)
e Z The z position of the vertex. (F)
e Chi2 x2 of vertex fit. (F)

e Chi2MisM x? for the hypothesis that a VO “points” to the primary vertexd(®.f.). The vertex-
fitting package constructs a “mismatch vectorbetween a projected VO track and the prime
vertex at the point of closest approach: “pointing” is ea@lewt to the hypothesis that this vect
7 = 0 (Memo 96-019, section 8). This word has been added to the DSU7¢4) because the
necessary calculations use both track and vertex erroigestrand the latter are not recorded
the DST. This word is identically zero for non-VO0 vertices.

5.5 The MAS bank

The MAS banks summarise the information in the match tabdelyred by phase 2 processing, the
being essentially one MAS bank for each object, or line ofrtfatch table.

The first set of words in the MAS bank are so-called “pointacsthe information stored in the ban
for each subdetector and “pseudo” subdetector. A subadetect physical NOMAD subdetector, ¢
which there are 10 for the purposes of the present DST (1=X3HIRD, 3=PRS, 4=CAL, 5=MUO,
6=SCI, 7=VET, 8=FCA, 9=HCA, 10=SIT). The SIT of “NOMAD Stagointer is always empty in the
present DST version. “Pseudo” subdetectors are blocklgtsidentifiers greater than 10 and are used
store additional information about a match object in a matiret can be handled similarly to the “rea
subdetector match information. Pseudo subdetectors ioathiext of the present DST are 11=Feldm
Clustering, 12=Extrapolator information and 13=PadovenBsstrahlung Strip information.

If a pointer to a given subdetector is non-zero, then thatistgztor has contributed information to th
object. The value of the pointer is the offset within the bahkhe word containing the blocklet type fc
the subdetector — subsequent words in the bank give the alathat blocklet. There can only be or
blocklet per subdetector in any given object. For examplha pointer to TRD info is non-zero, thi
blocklet pointed to will be a 201 (TRD track matched to driacnber track) or a 202 (TRD standalor
track) but not both.

The information stored for each blocklet will now be coveredome detail. The order of the words |
the bank has not necessarily been preserved in this disousshce occasionally they are grouped
subject.

5.5.1 Blocklet 101

The 101 blocklets store information about reconstructesdgdd tracks. The majority of these words &
derived directly from the TRK bank; it is indicated wherestfs not the case.

e Dchld The track reconstruction number (this corresponds to thebeu provided bydcTrackRec
in the drift chamber package). (1)

e IndxVxsB This word gives the index in the RVXS bank of the beginningesefor this track. On
the DST, an “index” can be thought of as a row number, or linea table. If one considers th
RVXS bank to consist of a table where each row contains infibion on one reconstructed verte
thenIndxVxsB tells the user which row to look at in order to find information the beginning
vertex for this track. (1)

5.5. The MAS bank 37

IndxVxsE Index of end vertex in RVXS bank. See the previous discussfdndxVxsB. Note
that this word may be set to zero in cases where the end patekugpe is 10, since these vertices
are not retained in the RVXS bank. (1)

IndxStks Index of simulated track in STKS bank. This can only be nomZer Monte Carlo
data. The TRK banks contain a reference link to the correlipgnSTRK bank containing the
simulated track, where a correspondence has been eseablidthis word is filled by extracting
the ID of the simulated track from the appropriate STRK bamid matching it with the entries in
the STKS bank. This word will not be filled iall cases. (1)

NHits The number of hits on the track. (1)
NDF The number of degrees of freedom used for the track fit. (1)
Charge The charge of the track. (1)

Type Geant particle code of model used in the the track fit. Notettieafact that this stores the
code corresponding to tiraodel means that for both electrons and positrons this word wileha
the code for an electron (since the electron model is usefittiog in both cases). Thus this word
should not be used to determine the charge of the partiClearge should be used instead. (1)

NDcVHitB A packed word giving information on hits in the veto drift chiaer around the point at
which an extrapolation of the track backwards intersectsiitwo given radii. Also the number of
hits collected in a road backwards from the start of the tiadkcluded. The format is as follows:

1000000* (No. Hits in Tube 3cm wide, 50cm long)
+ 1000*(No. Hits in Dc Veto, 5.0cm radius circle)

+ (No. Hits in Dc Veto, 2.5cm radius circle)
No. Dc Veto Hits = 100*(No. U Hits) (0-9)

+ 10*x(No. Y Hits) (0-9)

+ (No. V Hits) (0-9)

As this information is not stored in the current phase2 dugpuicture, the DST code obtains this
information by using code provided by A. Geiser and A. Buemloich accesses the DADC bank.
Access routines to unpack the different components of tiisthe following word are provided -
see section 4.3.3 (I).

NDcVHitF A packed word giving information of the same nature as theipus word ND-
CVHItB, only in this case the track is followed forward from its eram. (1)

Chi2 The x? of the track fit. (F)
ProbChi2 The x? probability of the track fit. (F)

As a result of the fitting procedure for tracks and vertichs,homentum (and associated error matrix)
for a track is determined at several points: at the planeefitht and last drift chamber hits associated
with the track, and at the beginning and end point verticeihvthe track connects. |If the track is

a hanger or leaves the chamber, the first or last hit may ofseocorrespond to the beginning or last
vertex. The TRK banks store, at the beginning and end vertténe track, the fitted 3-momentum and

38 Chapter 5. The Banks in More Deta

the 6 elements of the upper diagonal of the covariance mfatrithe 3-momentum. At the first and la:
hits, the quantities stored ar¢p, , y, t., t, and corresponding upper diagonal of the covariance ma
t, andt, are the slopes of the track in the- z andy — z plane at the pointa, y, z). For consistency,
on the DST the first and last hit parameters are transformeg, t,, p., using utility routines from the
extrapolator package.

e PxB The x component of the momentum at the beginning vertex. (F)
e PyB The y component of the momentum at the beginning vertex. (F)
e PzB The z component of the momentum at the beginning vertex. (F)
o EPXPxBV), = cov(p.,p.) at the beginning vertex. (F)

o EPxPyB cov(p.,p,) at the beginning vertex. (F)

o EPXPzBcov(p,, p.) at the beginning vertex. (F)

e EPYPYBV,, = cov(py,p,) atthe beginning vertex. (F)

e EPyPzBcou(p,, p-) at the beginning vertex. (F)

e EPzPzBYV),_ = cov(p.,p.) at the beginning vertex. (F)

e PxF The x component of the momentum at the first hit. (F)

e PyF The y component of the momentum at the first hit. (F)

e PzF The z component of the momentum at the first hit. (F)

o EPXPYF cov(p,, p,) at the first hit. (F)

o EPXPzFcouv(p,,p.) at the first hit. (F)

e EPYPYFV,, = cov(py,p,) at the first hit. (F)

o EPyPzFcou(py, p-) at the first hit. (F)

e EPzPzFV, = cou(p.,p.) at the first hit. (F)

e PxL The x component of the momentum at the last hit. (F)

e PyL The y component of the momentum at the last hit. (F)

e PzL The z component of the momentum at the last hit. (F)

o EPXPXL V), = cov(p.,p.) atthe last hit. (F)

o EPXPyL cov(p.,p,) at the last hit. (F)

e EPXPzL couv(p,, p.) at the last hit. (F)

e EPYPYL V), = cov(p,,p,) atthe last hit. (F)

5.5. The MAS bank 39

o EPyPzL cov(p,,p-) at the last hit. (F)

o EPzPzLYV), = cov(p.,p-) at the last hit. (F)

e PXE The x component of the momentum at the end vertex. (F)
e PyE The y component of the momentum at the end vertex. (F)
e PzE The z component of the momentum at the end vertex. (F)
o EPXPXEV,, = cov(p.,p.) at the end vertex. (F)

o EPXPYE cov(p.,py) at the end vertex. (F)

o EPXPzEcov(p,,p.) at the end vertex. (F)

e EPYPYEV,, = cov(p,,p,) atthe end vertex. (F)

o EPyPzEcou(p,,p-) at the end vertex. (F)

e EPzPZEV), = cov(p.,p-) at the end vertex. (F)

The spatial position of the first and last hits on each traekstored, along with the errors on the position

of the first hit. Also, the track length using the first and |ais is available in the TRK bank, and
propagated to the DST.

e XF The x position of the first hit on the track. (F)
e YF They position of the first hit on the track. (F)
e ZF The z position of the first hit on the track. (F)
o EXXF couv(z,z) at the first hit on the track. (F)
o EXYF couv(z,y) at the first hit on the track. (F)
e EYYF cou(y,y) at the first hit on the track. (F)
e XL The x position of the last hit on the track. (F)
e YL They position of the last hit on the track. (F)
e ZL The z position of the last hit on the track. (F)

e Length Track length (cm). (F)

Both the purity and efficiency words which characterize ttataih between a reconstructed and simulated

track in Monte Carlo events are now filled in the TRK banks aaual loe transferred to the DST.

e Purity Purity of match to simulated track. (F)

e Efficm Efficiency of match to simulated track. (F)

40 Chapter 5. The Banks in More Deta

For those tracks which have been identified as being an etecrrefit of the track using the electrc
hypothesis is performed by the reconstruction, and thé fpacameters recorded in the TRK bank w
be those of the electron fit. In order to have available someembum information assuming the trac
was a pion, in such cases the magnitude of the momentum fremidm fit is stored in the TRK banl
and transferred to worBPion on the DST. If the electron fit was not employed, the wBiRion will
contain 0.0, as in the TRK bank.

e PPion Momentum from pion fit. (F)

The following six words give breakpoint information for tiack. For a detailed discussion of the
contents, MEMO 96-016 [4] should be consulted. Note thatléise four words only contain usefu
information in those cases where the number of hits on thek tfdHits, is greater than 21. In othe
casesFChisq7 and FChisg9 contain 10000000. an@ifffRm1 andDiff9Rm1 contain -9999.0 (as ir
the TRK bank).

e Ck Mismatchedy?. (F)

e Fk Fruhwirth. (F)

e FChisq7 Fisher F7. (F)

e DifffRm1 Back-front 1/R difference i for the 7 parameter case. (F)
e FChisq9Fisher F9. (F)

e DIiffdRm1 Back-front 1/R difference i for the 9 parameter case. (F)

The final word in the 101 blocklet gives tlig of the track at the first hit. It is stored primarily to ai
in studies of the FCAL, where timing is not as accurately geieed and tracks in the drift chambel
emerging from the FCAL will not have a well determined vertex

e TZero Thet, of the track at the first hit. (F)

The muon information which is stored in the 101 blocklet isiel directly from the DMMU bank.
Apart from the word$”robMu andProbMuH , the other words come from the muon veto blocklet (i
muon veto blocklet in the DMMU bank has ID of —1).

e MuHits This word summarises the hits in the x and y projections it estation for this track, as
well as the hits in the muon veto scintillators. It is constedl as follows: if the number of hit:
in projection and station are denot®&K1, NY1, NX2, NY2 (with obvious notation), antlV is
the sum of the hits in each of the 4 muon veto scintillatorsntMuHits = 10000 x NX2 +
1000 x NY2+100 x NX1+10 x NY1+NV. The relevant words in the muon veto blockl
are 8 and 9. Note that unfortunately the ordering of statimhm@ojection used in constructing thi
word differs from that used in word 9 of the muon veto blockifethe DMMU bank. Note also
that the muon veto scintillators were not present in 1995ceAs routines to unpack the differe
components of this and the following word are provided - sgien 4.3.3 (1).

MuHitsNF This word is in the same format as the previous wdidHits, only in this case only
hits which have not been flagged as belonging to a matched mm@ocounted. Thus the forme
is MuHits = 10000 x NX2 + 1000 x NY2 + 100 x NX1 + 10 x NY1 In this case, as
the information is not stored in the current phase2 outputsire, the DST code calls the muc
library routine CountMuNotFI to obtain the information) (|

5.5. The MAS bank 41

ProbHit1 Probability to hit muon station 1. (F)

ProbHit2 Probability to hit muon station 2. (F)

ProbHitG Probability to hit gap in muon chambers in station 1. (F)

ProbHitV Probability to hit muon veto counters. (F)
ProbRch1 Probability to reach muon station 1. (F)

ProbRch2 Probability to reach muon station 2. (F)

e ProbMu Probability to be a muon from muon chambers. This word isreeh the global quality
word (word 5) of the DMMU bank. If the global quality word is @iéntified muon) thefProbMu
is set to 1.0. The information contained in this word is pntlgeequivalent to that in the word
Phmu in the DMMU bank muon veto blocklet, and also flagging of a muath this word should
correspond to the GEANT particle code for the track beingsétor 6. (F)

The wordProbMuH is the result of the output of the algorithm due to Gary Feldméich sets out
to identify muons using information from ECAL and HCAL. Thgsa direct copy of the corresponding
word in the phase2 DMHC bank.

e ProbMuH Probability to be a muon from ECAL/HCAL information. (F) Thactional part of this
word gives the combined probability using ECAL and HCAL dtset to 0.5 if information from
neither is available. The integer part of the word is a statde, having the following possible
values:

: 0 Both ECAL and HCAL information used.

: 1 Only HCAL information used. ECAL had zero energy or potdrdieerlaps.

1 2 Only ECAL information used. HCAL had low fiducial coveragepmtential overlaps.
: 3 Neither ECAL and HCAL information used.

5.5.2 Blocklet 104

The 104 blocklets store information about neutral “tracks®. calorimeter objects which have been
associated to a reconstructed vertex. In the phase2 outpaotwse, the information for these tracks are

stored in TRK banks hanging from dummy vertices of type 11.
In the version of phase2 output from which this DST is derjvaskociation of calorimeter objects is
only made to the primary vertex (although in a few cases offifind objects associated to end point

vertices of type 10). This situation should be contrastetth wiat for DST v7rl, where associations to

many different vertex types appeared.

e Dchld The track reconstruction number (this is analogous to timeb®u provided bypcTrackRec
in the drift chamber package for charged tracks). (I)

e IndxVxsB This word gives the index in the RVXS bank of the beginningesefor this track. On
the DST, an “index” can be thought of as a row number, or linea table. If one considers the
RVXS bank to consist of a table where each row contains infion on one reconstructed vertex,
thenIndxVxsB tells the user which row to look at in order to find information the beginning
vertex for this track. (1)

42 Chapter 5. The Banks in More Deta

IndxVxsE Index of end vertex in RVXS bank. See the previous discusefoimdxVxsB. For

neutral tracks as implemented in the present DSTs, this wdtdlways be set to zero, since a
neutral tracks are constructed from calorimeter objectssando not have an end point vertex
the RVXS bank. (I)

IndxStks Index of simulated track in STKS bank. This can only be nomZer Monte Carlo
data. The TRK banks contain a reference link to the correipgnSTRK bank containing the
simulated track, where a correspondence has been eseabli3this word is filled by extracting
the ID of the simulated track from the appropriate STRK bamd matching it with the entries i
the STKS bank. This word will not be filled iall cases. (1)

Type Geant particle code for this track. This will be type 1, cepending to a photon. (1)
e PxB The x component of the momentum at the beginning vertex. (F)
e PyB The y component of the momentum at the beginning vertex. (F)
e PzB The z component of the momentum at the beginning vertex. (F)

o EPXPxBV), = cov(p.,p.) at the beginning vertex. (F)

EPXPyB cov(p..p,) at the beginning vertex. (F)

)
o EPXPzBcov(p,, p.) at the beginning vertex. (F)
EPyPYyB YV, = cov(py,py) at the beginning vertex. (F)
e EPyPzBcou(py, p-) at the beginning vertex. (F)
o EPzPzBYV), = cov(p:, p-) at the beginning vertex. (F)

The track length for a neutral track is not stored in the phamatput, but is calculated for the DS
as follows. The position in space of the shower correspantbrthe calorimeter object that this trac
represents is extracted from the DMCA bank, and the modultiseovector joining this space point t
the primary vertex is taken as the length of the track.

e Length Track length (cm). (F)

Note that the spatial position that is stored in the 404 Bkicthat accompanies a 104 blocklet is tl
position of the ECALclusterwhich has been used in forming this track, not the positiothehower
The latter is not stored on the present DSTSs, and if requimetst be calculated from the position of tt
primary vertex, the direction of the track as given by thet wector derived from the 3-momentum ¢
the track, and the track length.

5.5.3 Blocklet 201

The 201 blocklets store information for TRD tracks which édeen matched to a drift chamber trac
The information is taken directly from the DMTR and DOTR banwith the exception of the averag
energy deposition per plane, for which case the energy imsedavith each hit is taken from the DATT
bank.

For more information on the words in this blocklet, the NOMAREmos 95-041 [6] and 96-005 [7
could be consulted. Some of the description below is deffire@d the phase 2 Web pages [5].

5.5. The MAS bank 43

Trdld The TRD track identifier. (1)
NHits The number of TRD planes hit for this track. (1)
DoubP The overlap flag. (I) The values taken are as follows:

: -1lsolated track.

: -11 Single Id applied because double was not applicable.
: 0 Pion after 1 track and and 2 track Id.

: 1 Electron after 1 track changed to pion after 2 track Id.

. 10Pion after 1 track changed to electron after 2 track Id.
: 11 Electron after 1 track and and 2 track Id.

NOver The number of overlapping tracks. (1)
NShit The number of shared hits for this track. (I)

NIden The indecision flag. This is set to 1 if the result of 2d tradntification was electron plus
pion and both have > 2 GeV /c. In this case it is hard to take a decision. (1)

Dist Mismatch parameter between TRD and DCH tracks. (F) Thikertérom the DMTR bank,
where it is filled with the value returned by the functibeTrdDistance (this is intrdmatch.c in
thematch subdirectory of the phase2 source).

EAvg The average energy deposition per plane (in keV). The engggyit is obtained from the
DATR bank. In cases where there has been an ADC overflow, grgemord in the DATR bank

has been set artificially to 99999 keV, and for the presemitation, a value of 100 keV is taken.

)

ProbEl Probability to be an electron. (F)

PionCon The pion contamination. If the algorithm was not applie@, thlue -1 will be found. (F)
ElAcc The electron acceptance. (F)

PionCtr The pion contamination (truncated). (F)

EIAtr The electron acceptance (truncated). (F)

ProtCon The proton contamination. (F)

EHitl The energy deposition in plane 1 (keHit1 < 0 denotes a shared hit). (F)
EHit2 The energy deposition in plane 2 (kelHit2 < 0 denotes a shared hit). (F)
EHit3 The energy deposition in plane 3 (kelHit3 < 0 denotes a shared hit). (F)
EHit4 The energy deposition in plane 4 (keHit4 < 0 denotes a shared hit). (F)
EHit5 The energy deposition in plane 5 (kelHit5 < 0 denotes a shared hit). (F)
EHit6 The energy deposition in plane 6 (keHit6 < 0 denotes a shared hit). (F)

44 Chapter 5. The Banks in More Deta

e EHit7 The energy deposition in plane 7 (keHit7 < 0 denotes a shared hit). (F)
e EHit8 The energy deposition in plane 8 (keHit8 < 0 denotes a shared hit). (F)

o EHit9 The energy deposition in plane 9 (keHit9 < 0 denotes a shared hit). (F)

The wordsEHitl throughEHIit9 were introduced in DST v7r3, where they were always positive-
bers. In the DST v7r4, howevernggativenumber is used to flag a straw tube “hit” which is shared w
one or more other DCH-TRD matched tracks. To obtain the grégggosited, the absolute value shot
be taken.

5.5.4