
January 14, 2003

Nomad Reconstruction Software

Nomad DST Package

Version v7r4

Kevin Varvell1

Abstract

This note describes the Data Summary Tape (DST) package for NOMAD. The version described here is
designed for production and examination of DSTs using reconversion 7r7 and related libraries.
This package includes :

• Code to produce the DST ZEBRA structure from phase2 banks

• Additional temporary code to add information to the DST structure without a
repass of phase2.

• Access routines to the DST structure for C and Fortran programmers, includ-
ing the package of Fergus Wilson.

1Falkiner High Energy Physics Department
The University of Sydney
(KEV@PHYSICS.USYD.EDU.AU)

ii

Table of Contents

1 Introduction 1

1.1 A little history 1

1.2 Layout of this document 1

1.3 Acknowledgements 2

2 Brief Description of the Package 3

2.1 Initialisation 3

2.2 End of run .. . 3

2.3 Creating a DST 3

2.4 Print output 3

2.5 Debug output 4

2.6 Data cards in recon 4

2.7 Histograms 4

3 The DST Structure 5

3.1 DST Header Bank 5

3.2 Event Summary Bank 5

3.3 Reconstructed Vertex Summary Bank 7

3.4 Match Summary Banks 7

3.4.1 MAS bank structure .. . 7

3.4.2 Subdetector blocklet structure and Identifiers 7

3.5 Lepto Summary Bank 8

3.6 Simulated Vertex Summary Bank 8

3.7 Simulated Track Summary Bank 8

3.8 Simulated Calorimeter Summary Bank 9

3.9 FZ Header .. . 9

3.10 Alternative ECAL clustering of Gary Feldman 9

3.11 Extrapolator information 10

3.12 Padova Bremsstrahlung Strip 10

3.13 Notes on bank contents 10

3.13.1 Omissions .. . 10

3.13.2 Track lengths 11

3.13.3 Bremsstrahlung algorithms 11

iii

4 Access Functions 12

4.1 Access routines for C Programmers 12

4.1.1 Navigating the structure in C 12

4.1.2 Low-level Access to Bank Contents in C 13

4.1.3 Higher-level Access to Bank Contents in C 15

4.2 Access for FORTRAN Programmers 15

4.2.1 The include file dstparams.inc 15

4.2.2 Direct Navigation with FORTRAN 17

4.2.3 Access Routines and FORTRAN 19

4.2.4 Higher-level Access to Bank Contents in FORTRAN 21

4.3 Utility Routines 27

4.3.1 General utility routines 27

4.3.2 Extended access routines 29

4.3.3 Access routines for packed words 29

4.3.4 Routines for backwards compatibility 31

5 The Banks in More Detail 32

5.1 The FZ Header .. . 32

5.2 The DST bank .. . 33

5.3 The EVS bank .. . 33

5.4 The RVXS bank .. . 35

5.5 The MAS bank .. 36

5.5.1 Blocklet 101 .. 36

5.5.2 Blocklet 104 .. 41

5.5.3 Blocklet 201 .. 42

5.5.4 Blocklet 202 .. 44

5.5.5 Blocklet 301 .. 44

5.5.6 Blocklet 304 .. 46

5.5.7 Blocklet 401 .. 46

5.5.8 Blocklet 404 .. 48

5.5.9 Blocklet 501 .. 49

5.5.10 Blocklet 505 .. . 50

5.5.11 Blocklet 701 .. . 51

5.5.12 Blocklet 707 .. . 51

5.5.13 Blocklet 801 .. . 51

5.5.14 Blocklet 808 .. . 52

5.5.15 Blocklet 901 .. . 52

5.5.16 Blocklet 904 .. . 53

5.5.17 Blocklet 909 .. . 53

iv

5.5.18 Blocklet 1101 54

5.5.19 Blocklet 1104 55

5.5.20 Blocklet 1109 55

5.5.21 Blocklet 1111 56

5.5.22 Blocklet 1201 56

5.5.23 Blocklet 1301 58

5.6 The LEPS bank .. . 60

5.7 The SVXS bank .. . 61

5.8 The STKS bank .. . 61

5.9 The SCAS bank .. . 63

6 Code 65

6.1 Include files 65

6.2 The Source Code 66

6.2.1 Creation of the DST structure 66

6.2.2 Printing of the DST structure 68

6.2.3 Auxilliary routines for filling of the DST structure 69

6.2.4 Access routines to the DST structure 75

6.3 Histograms 75

6.4 Awk scripts for automatic code generation 76

6.5 Making changes to the DST code 76

6.6 Building the DST library 77

6.7 Documentation 78

7 Release Notes 79

7.1 v7r4 Release Notes 79

7.1.1 v7r3 to v7r4 .. 79

7.2 What is missing and why - v7r4 79

7.3 Version 7r4 and Recon 79

7.4 Future directions and issues 80

Bibliography 81

List of Figures

3.1 The DST bank structure 6

Chapter 1: Introduction

This note describes the ZEBRA-based Data Summary Tape (DST)structure for the NOMAD offline.
The need for a relatively compact representation of the output of the matching process (reconstruction
phase 2), which can form a common starting point for analysis, was one of the main motivations for the
setting up of such a structure.

1.1 A little history

The DST structure is based exclusively on the ZEBRA bank structure available after Recon phase 2
processing has taken place. The first release was given the name v1r0, and was used to produce DSTs
from the results of recon prod4 production on 1995 data. Thatrelease wasonly intended to be used
with prod4 output tapes from 1995. It is unsuitable for use with recon v7 compatible libraries in two
respects - it has code to fix bugs in prod4 output which have subsequently been fixed, and it requires
some extra “non-standard” code in order to access information not available on prod4 output but which
is now available with recon version 7 production.

An updated version for prod4 output, v1r1, was subsequentlyreleased. This fixed some bugs in v1r0,
and included in the DST library itself the access package of Fergus Wilson [2]. DSTs were not produced
with this version.

Version v7r1 was produced in March 1997. This was intended for use with the first test of production
made with recon v7 and the associated libraries at the time. Much feedback from its use was obtained
which was incorporated into release v7r2 [3], intended for use with reconv7r7, phase2v7r3c and related
libraries. This release was made in June 1997.

Version v7r3, released in February 1998, incorporated several new features. It was set up to run on the
samephase2 output that was used for v7r2, in order to avoid requiring a time consuming new pass of
phase2. This meant that some of the new features in v7r3 had tobe be addedad hocat the DST level,
which was messy but expedient.

The present release, v7r4, is a minor iteration on v7r3. Two updates, due to B. Yabsley, have been added.
These correct the TRD shared hit handling which was not handled correctly in the production to produce
v7r3, and add a single word to allow goodness of fit of V0 vertices to the primary to be ascertained. The
ad hoc code which eliminates the need for a full phase2 reprocessing is present in this version also, as
the likelihood of a further phase2 processing of the NOMAD data decreases with time.

1.2 Layout of this document

A brief overview of the package is given in chapter 2. The structure in its present form will be described
in chapter 3. In chapter 4, the access routines which are available for extracting information from the
structure will be described, and some examples given for C and Fortran. A more detailed description of
the banks is given in chapter 5. In chapter 6, some details of the organisation of the DST code itself will
be given, intended for specialists who may need to interact with the source code. Finally, in chapter 7,
release notes for the current version are given and some relevant issues discussed.

A Web Page exists which gives up to date information on the current status of DST development. This
may be accessed from the NOMAD Web Pages by going to the FARINEpage and following the “dst”
link from there [1].

This document may be found in the file $NOMAD˙PS/dstv7r4.ps on the NOMAD cluster. The corre-
sponding bank documentation can be found in the file $NOMAD˙PS/dstv7r4˙bankdoc.ps. As indicated

1

2 Chapter 1. Introduction

above, this version of the library includes the access code package developed by Fergus Wilson [2],
which will be referred to in this document as the “dstaccess”package. At the time of writing, the doc-
umentation for “dstaccess” can be found in the file $NOMAD˙PS/dstgenv1r2.ps, but it is wise to check
the above web page for the up-to-date location.

1.3 Acknowledgements

Because of the fact that this version of the DST package is designed to be run on phase2 output that
has not been reprocessed through an updated phase2 package,code has had to be provided to obtain or
calculate some of the new information that is not provided inthe present phase2 output ZEBRA banks,
and to correct some of the problems with the phase2 from whichDST versions v7r2 and v7r3 were
produced.

This code has come from various sources. Here is a hopefully complete list of people providing this
code - I apologise if anyone has been omitted: Dario Autiero,Antonio Bueno, Marco Contalbrigo, Luigi
DiLella, Achim Geiser, Peter Hurst, Stefano Lacaprara, Domizia Orestano, Fabrizio Salvatore, Bruce
Yabsley.

Chapter 2: Brief Description of the Package

The package in its present form has been designed to be interfaced to recon, although the interface is
fairly clean. In principle, therefore, it can be called fromother executives. For example, it could be
called from camel to produce a DST structure from a recon output file which has previously had phase 1
and 2 processing performed.
The DST package has been written primarily in FORTRAN, but contains some C code as well, espe-
cially when coding the access functions. The routines described in this chapter are FORTRAN routines;
however, many routines written in one language mave been rendered callable from the other through the
cfortran package - one example is given below.

2.1 Initialisation

An initialization routine is provided with the nameDSTINI , which currently specifies which match com-
binations of subdetectors have been defined in this package,and sets their identifiers. It also initializes
variables used to compile statistics on the DST size. This routine is called during the initialization phase.
If not called explicitly by the executive program, it will becalled the first time a call toCreateDSTor
PrintDST is invoked. These are introduced below.

2.2 End of run

An end of run routine,DSTEND is also provided. At present this routine prints some statistics on the
size of the DST, provided that the DST print level is set to 1 orgreater.

2.3 Creating a DST

For each event, the DST ZEBRA structure is created from the full ZEBRA structure by a call to the
subroutineCreateDST().
In this version of the package,CreateDST()also calls a preprocessing routine,DstPreProcess(), which
performs the necessary additional work required because phase2 has not been reprocessed prior to input
the DST package. This will be described in more detail in chapters 6 and 7.

2.4 Print output

A flag to control the amount of printout produced is used by thepackage. To set this flag, the routine
dstSETPRFLAG(ILEVEL) should be called, where the higher the value ofILEVEL , the more printout
is obtained. If set to 0, no printout occurs, while if set to 1,summary information is printed ifDSTEND
is called.
A routine to print the contents of the DST bank structure has been provided with the package, which can
be invoked with a call toPrintDST() . In version 1 of the package this routine provided an output in a
wide format (up to 132 characters), which required special handling when viewing or printing the output.
From version v7r1 onwards, a maximum width of 80 characters is respected in the output, and the word
names used are identical to those in the bankdoc.
The routines mentioned in this chapter have been rendered C callable, and can be invoked by capitalising
the subroutine name, e.g.

PRINTDST();

In this case, the user should include the header filedstgen.hin the C source file.

3

4 Chapter 2. Brief Description of the Package

2.5 Debug output

In a similar manner to the print flag described above, a debug flag is used by the package, primarily of use
in development. In this case the routinedstSETDBFLAG(ILEVEL) should be called, with increasing
ILEVEL giving increasing amounts of output (at present ILEVEL set to 2 gives maximum output).

2.6 Data cards in recon

Version 7 of recon introduced a data card DSTF which can be used to set the print and debug flags as
desired. Two arguments are taken, the first setting the printlevel, the second the debug level. The default
is a print level of 1 and a debug level of 0, as shown below.
* ---------------------------------

* -> DSTF

* Print / Debug for DST

DSTF 1 0

* ---------------------------------

In order to get DST output from a recon run, two cards must be adjusted, the LUNS card and the TRIM
card.
The following LUNS card will place the DST ZEBRA structures into fort.13 and the full phase2 output
(including the DST ZEBRA structures) into fort.11.
* ---------------------------------

* -> LUNS

* Input/Ouput/FzIn/FzOut/DSTOut

LUNS 1=5 2=6 3=10 4=11 5=13

* ---------------------------------

The following TRIM card will ensure that fort.13 contains only the DST structure.
* ---------------------------------

* -> TRIM

* ----- if DSTout in LUNS -----

* Which structure to keep (DST)

* 1 : >0 --> Drop RAWD

* >1 --> Drop SEVT/EVT/DETE

* 2 : =1 --> Drop DETE

* =2 --> Drop DETE but BDCH

* 3 : =1 --> Compress TX/TXD

* =2 --> Drop TX/TXD

*

TRIM 1=2 2=1 3=2

* ---------------------------------

2.7 Histograms

Some code exists which will histogram all words stored in theDST structure. For more details refer to
chapter 6.

Chapter 3: The DST Structure

The DST banks are placed in the overall ZEBRA structure at link -6 of the top level NOMA bank, which
was reserved for such a structure from early in the experiment.

Figure 3.1 shows the layout of the banks. A headerDST bank acts as a hanger to which the banks
containing real information are attached. The following types of banks can be found in the structure:

• EVS: TheEVentSummary bank contains some global summary information for the event, which
may be useful for users to make some of their selections without looping through the detailed
structure.

• RVXS: TheReconstructedVerteX Summary bank contains a list of the reconstructed vertices in
the event.

• MAS: TheMA tchSummary banks are a linear structure containing one bank per line of the match
table, or if you like, one bank per “object” that the matchinghas produced.

• LEPS: TheLEPto Summary bank contains a list of the particles in the initial interaction generated
using LEPTO (in Neglib), as given in the LUJETS common.

• SVXS: TheSimulatedVerteX Summary bank contains a list of the simulated vertices in the event.

• STKS: TheSimulatedTracK Summary bank contains a list of the simulated tracks (chargedand
neutral) contained in the event, as provided by the GENOM simulation.

• SCAS: TheSimulatedCAlorimeterSummary bank contains a list of the calorimeter cells which
have deposited energy in them, as provided by the GENOM simulation.

Note that some of the banks are only available for Monte Carloevents. These are the LEPS, SVXS,
STKS and SCAS banks. The EVS, RVXS and MAS banks are availablefor both data and Monte Carlo.

The detailed contents of the banks just described can be found in the bank documentation, and also in
chapter 5. A copy of the current working version of the DST bank document can be found in $NO-
MAD˙PS/dstv7r4˙bankdoc.ps on the cluster.

Some further information and discussion on the banks in the structure will be given in the following
sections.

3.1 DST Header Bank

The only information stored in the header bank is the versionnumber of the DST, stored as a decimal
number. This can be retrieved using the C function (of type float, taking as argument the pointer to the
DST bank)DstVersion(˙Dst Dst)or the FORTRAN function (of type REAL)GetDstVersion().

3.2 Event Summary Bank

The purpose of this bank is to provide some global summary information for the event. It may be of
use in making some very crude event selections without having to loop through the banks containing the
more detailed information.

5

6 Chapter 3. The DST Structure

NOMA

-

-6
DST

-

-1
EVS

-

-2
RVXS

-

-3
MAS

��
HH - MAS

��
HH

-

-4
LEPS

-

-5
SVXS

-

-6
STKS

-

-7
SCAS

Figure 3.1: The DST bank structure

3.3. Reconstructed Vertex Summary Bank 7

3.3 Reconstructed Vertex Summary Bank

This is essentially a list of vertices which have been reconstructed by the vertex package, and the bank
is thus implemented as a word giving the number of vertices stored, followed by a series of fixed length
blocklets one per vertex.

Note the following:

• End point vertices, which have vertex type 10 in the VTX banksof the full structure, have been
suppressed on the DST if there are no neutral objects attached. Also skipped over are vertices
of type 11 (dummy neutrals from the unassociated matched clusters - these were type 8 in earlier
versions of the VTX structure) and vertices of type -1 (whichare dummy primary vertices produced
when no primary vertex is reconstructed, in order to have somewhere to hang the TRK banks).

3.4 Match Summary Banks

The format of the MAS banks requires some additional explanation which will hopefully help in under-
standing the bankdoc.

Each MAS bank corresponds to a line in the match table maintained by the matching engine, and can be
thought of as an object which has resulted from the matching process. Every object in the match table
is realised as a MAS bank, and so the size of the MAS structure (and amount of ZEBRA overhead) is
determined by what objects the match algorithms employed bythe matching engine choose to leave in
the match table. This is an area where choices made by developers of matching algorithms can sensitively
affect the ultimate size of the DST.

3.4.1 MAS bank structure

A MAS bank consists of a fixed set of header words followed by a number of subdetector blocklets.
There is one header word per NOMAD subdetector, and this header word, if non-zero, indicates that
the subdetector in question is contributing information tothe match object. Moreover, if the subdetector
information is present, the header word contains an offset from the start of the bank to the subdetector
blocklet containing the information.

By storing information in this way, the match information can be made reasonably compact. For an
overhead of one word per subdetector which mustalwaysbe present, it is then only necessary to store
those blocklets for which subdetector information isactuallypresent in the match table, this information
being reached within a particular MAS bank using the offset.

3.4.2 Subdetector blocklet structure and Identifiers

The first word of a subdetector blocklet is the blocklet type,indicating what sort of match this blocklet
corresponds to. This is constructed in the form mmnn, where mm is the ID of the subdetector providing
the information, and nn is the ID of the “seed” subdetector towhich it is matched. The IDs range from
1 for drift chambers to 9 for HCAL, following the normal NOMADconvention. In addition, ID 10 has
been reserved for the potential addition of the silicon prototype. IDs greater than 10 are used for special
purposes. ID 11 is used for storing the alternative ECAL clustering of Gary Feldman, as will be explained
later. ID 12 is used to store extrapolator information, and ID 13 to store Padova Bremsstrahlung strip
information.

8 Chapter 3. The DST Structure

As examples of blocklet IDs, a drift chamber track is given ID101, and an unassociated calorimeter
cluster ID 404. If the calorimeter cluster is in fact matchedto a drift chamber track, it would have ID
401. Subsequent words in the blocklet contain detailed information for the subdetector, and can be either
integer or floating depending on the context. The bankdoc provides this information as IO:I (for integer)
or IO:F (for floating).

This implementation based on a blocklet identifier again leads to compactness, since only the information
relevant to a match to the specified seed subdetector need be stored, without storing empty words. It
does make the bankdoc harder to read, however, and the point to note here is that for a given MAS bank,
at most onlyone type of blocklet will be present for a given subdetector. Forexample, although the
bankdoc describes for the calorimeter blocklet types 401 and 404, a MAS bank with a non-zero offset to
the calorimeter in its header words will containeithera blocklet 401 (cluster matched to a drift chamber
track)or a blocklet 404 (unassociated cluster), but not both.

Some of the MAS blocklets are variable in length, in cases where it is appropriate to store information
for a number of objects at once. Examples are the blocklets 505 and 808, for muon chamber standalone
tracks and events in FCAL respectively, and the blocklets 1101 and 1301, which store cross-reference
lists of objects in the bremsstrahlung strips.

The structure of the MAS banks will probably become clearer after studying the examples of access
given in chapter 4, or by looking at the output produced by thePrintDST() routine.

3.5 Lepto Summary Bank

This bank gives a summary of the event generation for the present event. A header gives the kinematic
variables, including neutrino energy (and parent particletype),xBj , yBj, W 2, Q2 andν, along with the
number of primary particles in the event. This header is followed by a series of blocklets, one per particle,
giving the particle type, 4-momentum and mass of each particle produced in the fundamental interaction
generated by LEPTO. Short-lived particles which will be subsequently decayed by GENOM are included.
The kinematic information is derived from the LEPT bank and the particle list from the LUJT bank, the
latter being essentially the information in the LUJETS common, minus the vertex information.

3.6 Simulated Vertex Summary Bank

This is a list of vertices which have been produced during theGENOM simulation of the event, using
the information which gets stored in the SVTX banks. As in thecase of the RVXS bank, the bank
is implemented as a word giving the number of vertices stored, followed by a series of fixed length
blocklets one per vertex. Because the number of vertices generated by a detailed GENOM simulation
can be large, and we are primarily interested in vertices which may have been reconstructed using the
vertex package, cuts will be developed to reduce the number of vertices stored. At present, end point
vertices (type 10) are suppressed unless the track pointingto them is a muon, and a z cut at the centre of
the HCAL is employed.

3.7 Simulated Track Summary Bank

The STKS bank is a list of tracks which have been produced during the GENOM simulation of the
event, using the information which gets stored in the STRK banks. The bank is implemented as a
word giving the number of tracks stored, followed by a seriesof fixed length blocklets one per track.
Because the number of tracks generated by a detailed GENOM simulation can be large, and we are

3.8. Simulated Calorimeter Summary Bank 9

primarily interested in tracks which may have been reconstructed using the drift chamber code, cuts will
be developed to reduce the number of tracks stored. At present the only cuts employed are to check that
the beginning and end point vertices do not both lie beyond the preshower, and to require the track to
have momentum greater than 30 MeV/c. Muon tracks are always retained. The number of tracks stored
is still large following this selection, and many are short tracks caused by the way GEANT steps through
the media of the NOMAD detector. More work is needed here to tune the track selection, especially as
the size of the Monte Carlo DSTs is presently prohibitive.

The current implementation of the STKS bank contains some drawbacks which will be mentioned. One
is that in choosing to store both charged and neutral “tracks” in the same bank, some waste of space is
produced due to the necessity to have fixed length blocklets and to store different information in the two
cases. Specifically, for charged tracks the position and 4-momentum at the first and last hits are stored
(for consistency with what is stored for reconstructed tracks), whereas for neutrals this information is not
present.

3.8 Simulated Calorimeter Summary Bank

The SCAS bank is a list of calorimeter cells which have seen energy deposition during the GENOM
simulation of the event, using the information which gets stored in the RCAL bank. The bank is imple-
mented as a word giving the number of cells stored, followed by a series of fixed length blocklets one
per cell. Users should be aware that the spatial informationstored in this bank is an offset relative to the
centre of the relevant cell, as is the case in the RCAL bank.

The scheme for handling Monte Carlo calorimetric information is still rather rudimentary. Users are
invited to suggest more appropriate information to be stored.

3.9 FZ Header

When the DST structure is output to a separate FZ file, the resulting ZEBRA structure has associated
with it the same FZ header that the full phase1 and phase2 structure utilised. Thus the user has available
the words stored there, such as the run and event numbers. These may be accessed transparently when
reading a DST file using, for example, the /NDEVENT/ common block used in recon and camel, into
which the header is unpacked upon reading in the event. The run and event number may be obtained in
this way, for example, which is why these words do not appear explicitly in the DST bank structure.

Access functions are provided in the DST library for returning words commonly required from the FZ
header. See the following chapter for more details.

3.10 Alternative ECAL clustering of Gary Feldman

The alternative ECAL clustering of Gary Feldman has been implemented in the following way. For con-
venience, these objects, which consist of clusters associated to a drift chamber track or an unassociated
cluster just as in the case of the “official” clustering in thematch engine, have been identified as belong-
ing logically to a subdetector of name FEL and identifier 11. The 9 pointers to subdetector blocklets
which appear at the top of the MAS bank have been extended to 13(pointer 10 is reserved for the silicon
prototype, and 12 and 13 are discussed in the next section). Following this pointer the user will arrive at
blocklets with ID either 1101 (for cluster associated to a drift chamber track), 1104 (for a cluster which
has been associated to a neutral HCAL cluster,itself associated to a standard ECAL cluster), 1109 (for a
cluster associated to a standalone neutral HCAL cluster which isnot itselfassociated to a standard ECAL

10 Chapter 3. The DST Structure

cluster, or 1111 (for an unassociated neutral cluster). In this way, the tools which are used to access in-
formation for the standard match objects can be used to access the alternative clusters in an analogous
way.

If the drift chamber track to which a charged cluster is associated is actually an electron which has an
associated bremsstrahlung strip, the cross-referencing information giving which objects form the brem
strip is included in the 1101 blocklet, which becomes variable length.

Note that the use of the identifier 1104 is different between DST version v7r2 and version v7r3 and the
present version. In v7r2, it referred to an unassociated, standalone Feldman ECAL cluster, while in the
later versions identifier 1111 is used to better reflect its meaning. In the present version, 1104 refers to
clusters which have been matched to those neutral HCAL clusters which are themselves matched to a
standard ECAL cluster, as explained above. It is the introduction of matching results for Feldman ECAL
clusters to neutral HCAL clusters which has necessitated this change, and users should be careful to take
into account the change in meaning.

The make switch DST˙FELDMAN which was present in version v7r1 source code to build a library
incorporating this alternative clustering is not used in later versions and can be omitted.

3.11 Extrapolator information

In version 1 of the DST library, extrapolator information atreference planes for PRS, CAL, HCAL and
the two stations of the muon chambers was only stored if that particular subdetector matched to a drift
chamber track. In the present library, extrapolator information is stored for all charged tracks if available,
and appears as a MAS blocklet with identifier 1201 (using “subdetector” 12 to denote the extrapolator).
The absence of this blocklet when blocklet 101 is present in an object indicates that no extrapolator
information was stored for this track (strictly speaking that no TX/TXD structure was present in the
phase2 output for this track).

3.12 Padova Bremsstrahlung Strip

In this version of the DST (from v7r2 onwards in fact) the Padova Bremsstrahlung Strip algorithm output
is available for the first time. For those electron tracks which are found to have emitted bremsstrahlung,
a blocklet of type 1301 is added to the MAS bank. This is an exact copy of the information in the DMBR
bank which is produced by the algorithm at the phase 2 level. The detailed contents of the blocklet can
be found in chapter 5. See also the note on bremsstrahlung algorithms below.

3.13 Notes on bank contents

3.13.1 Omissions

If words in the present DST are not filled, the most common reason for this is that the relevant words
containing the information are not present in the current phase1 and phase2 ZEBRA structure produced
by recon.

A more detailed description of what is missing can be found inChapter 7.

Where words have not been filled, the following convention has been adopted:

• Integers and floating words which are necessarily positive by their context have been given the
value integer -999 or floating -999.0.

3.13. Notes on bank contents 11

• Integers and floating words which can have a sign have been given value integer 0 or floating 0.0.

Where this has been done at the DST level, it is indicated in the bank document (please report any
omissions which are noticed, so that the bankdoc can be made more accurate). Note, however, that when
a value is notionally available in the phase1 and phase2 ZEBRA structure, its value has been preserved
in the DST. Therefore, if in fact it was not filled by the phase2code, the convention used by that code
must be ascertained in order to understand the DST contents.

3.13.2 Track lengths

With the present version of the DST, track lengths when present in the bankdoc are filled - this was not
the case with releases earlier than v7r2.

3.13.3 Bremsstrahlung algorithms

Users should be aware that there are results ofthreetypes of bremsstrahlung algorithm stored on the DST.
Information for the so-called “Padova” Bremsstrahlung algorithm will be found in MAS blocklets of ID
1301. Information for the algorithm of Gary Feldman will be found in MAS blocklets of ID 1101, with
some cross-referencing information in MAS blocklets of ID 1111. Finally, some words relating to the
algorithm which is present in the phase 2 calorimeter clustering code itself (specifically incalgamma.c)
can still be found in the 404 MAS blocklet. These three sets ofinformation should not be confused.

Chapter 4: Access Functions

Access functions to the DST ZEBRA structure are provided in order to ease its use for both C and
FORTRAN programmers.

The advantage of using access routines is that any analysis code that the user writes is in principle
immune to changes in the underlying ZEBRA structure. Where direct navigation of the structure is
performed, changes to this structure must be reflected in changes to the user code, requiring both more
work for the user and a heavier reliance on an up-to-date bankdocumentation (which of course should
be available!).

For the above reasons, use of the access routines provided with the DST package ishighly recom-
mended. Suggestions for further access routines that should be provided can be made, although the
number of further versions of the NOMAD DST library to be produced is probably rather limited at this
point in the experiment.

Two packages of access code are available to the user, one developed along with the dst library, and a
second, “dstaccess”, developed independently [2]. The examples which are given in this document refer
to the former.

In the following discussion, some examples are given example numbers. The code for these examples
can be found in the doc subdirectory of the dst source, enabling users to adopt them as templates for their
own programs.

4.1 Access routines for C Programmers

4.1.1 Navigating the structure in C

The complete DST ZEBRA structure has been mapped onto corresponding C structures, in order to
allow a C programmer to navigate the structure. The scheme used follows that outlined in the util
documentation, using macros passed to the C preprocessor. For example, the DST source code contains,
amongst others, the macros

REFERENCE_FROM_LINK(Dst, "DST ")

REFERENCE_FROM_REFERENCE(Dst, Mas, "MAS ", FirstMas)

REFERENCE_FROM_REFERENCE(Mas, Mas, "MAS ", Next)

which, upon generation of the library, makes available the functions

_Dst DstReferenceFromLink(int Ldst)

_Mas DstFirstMasReference(_Dst Dst)

_Mas MasNextReference(_Mas Mas)

In addition, some top entry access has been provided to the DST banks, in the form of functionsDstRe-
ference, to provide a pointer, and the integer functionDstLink , to provide a link to the ZEBRA bank.

Each C structure representation of a bank has an associated pointer type. As can be seen from the
functions above, the pointer to the DST bank structure has type˙Dst, to a MAS bank structurėMas, and
so on. In order to gain access to these pointer types, the include filedstbanks.hshould be incorporated
into your C source file. The include filedstgen.hprototypes the navigation routines mentioned above,
and in fact includesdstbanks.h.

Navigation through the banks with C can be illustrated with some examples.

12

4.1. Access routines for C Programmers 13

Suppose one wants to loop through the MAS banks. This could beachieved with the following code
fragment:
#include "dstbanks.h"

#include "dstgen.h"

_Dst Dst;

_Mas Mas;

Dst = DstReference();

for (Mas = DstFirstMasReference(Dst); Mas; Mas = MasNextReference(Mas))

{

<Do something with this MAS bank>

}

Having obtained the pointer to a particular MAS bank (that is, a particular object, or line, in the match
table), it is then necessary to access the subdetector blocklets contained in this bank. An integer function
MasBlocklet is provided to test whether a blocklet of a particular type isavailable.

Example 1 If the information desired comes from a muon matched to a drift chamber track (blocklet
identifier 501), the above code fragment could become
#include "dstbanks.h"

#include "dstgen.h"

void example1(void)

{

_Dst Dst;

_Mas Mas;

printf(" Calling EXAMPLE1 ...\n");

Dst = DstReference();

for (Mas = DstFirstMasReference(Dst); Mas; Mas = MasNextReference(Mas))

{

if (MasBlocklet(Mas, 501))

{

printf("Found blocklet 501. Do something with it.\n");

}

}

}

As can be seen, the functionMasBlocklet returns a non-zero value when the specified blocklet exists for
this object, and zero otherwise.

4.1.2 Low-level Access to Bank Contents in C

For those users who desire access at the individual word level to the C structure bank representation,
appropriate access routines are provided. At the risk of unwieldly names, these have been implemented

14 Chapter 4. Access Functions

using a naming scheme which can be deduced from knowledge of the bank name and the variable name
within the structure. The variable names are those given in the ZEBRA bank documentation for the DST,
and these names are case sensitive.

Examples will best illustrate the idea. Suppose one wishes to obtain the number of reconstructed vertices
stored in the RVXS bank. From the bank doc, the listed variable name isNVert , and is an integer. By
combining the bank name, with the first letter capitalised,Rvxs, with the variable name, we get the
access function nameRvxsNVert. Thus one might write

#include "dstbanks.h"

#include "dstgen.h"

_Dst Dst;

_Rvxs Rvxs;

int nvert;

Dst = DstReference();

Rvxs = DstRvxsReference(Dst);

nvert = RvxsNVert(Rvxs);

Example 2 Suppose one wishes to loop through these vertices and print out the z position. To do this
the access routine takes as an additional argument the “index” of the desired vertex (i.e. an integer in the
range 1 to the number of vertices) within the bank. The code

#include "dstbanks.h"

#include "dstgen.h"

void example2(void)

{

_Dst Dst;

_Rvxs Rvxs;

int nvert, i;

float z;

printf(" Calling EXAMPLE2 ...\n");

Dst = DstReference();

Rvxs = DstRvxsReference(Dst);

nvert = RvxsNVert(Rvxs);

if (nvert)

{

for (i = 1; i <= nvert; ++i)

{

z = RvxsZ(Rvxs, i);

printf("z position of vertex is %f\n", z);

}

}

}

4.2. Access for FORTRAN Programmers 15

should do the job.

Names of access functions to the information in the blocklets of the MAS banks are constructed along
similar lines, except that the names of the subdetectors which pertain to a given blocklet are included
in the function name. As an example, functions accessing a blocklet with ID 101 (drift chamber track
information), have namesMasDchDchxxxxxwherexxxxx is the variable name as given in the bank doc.
For blocklet ID 501 (information from a muon to drift chambermatch) the name would beMasMuoD-
chxxxxx. It can be seen that the rule is to replace the “subdetector” numerical ID, in the range 1 to 13,
with the three letter character identifier, drawn from the set {Dch, Trd, Prs, Cal, Muo, Sci, Vet, Fca,
Hca, (Sit), Fel, Ext, Bre}.

4.1.3 Higher-level Access to Bank Contents in C

Since it may be inefficient in many cases to call access functions that return a single word from the
DST structure, there is a case for providing higher level access routines to return blocks of information.
This functionality is provided through the “dstaccess” package, which is provided as part of the present
library. For further information, the reader is referred tothe appropriate documentation [2]. The examples
mentioned in that document may also be found in the source code for the present library, in the directory
/nomad/src/dst/v7r4/doc. The files have been renamed example11.F and example12.c.

4.2 Access for FORTRAN Programmers

FORTRAN programmers have the option of direct navigation ofthe banks in ZEBRA common, or of
using access routines. If using the former method, note mustbe taken that the contents of the banks
may change with the version of the DST, necessitating changeto the user code also. For this reason,
it is highly recommendedthat consideration be given to using access routines when dealing with the
ZEBRA bank contents. If the direct navigation method is chosen, then it is recommended that the
parameters which may be obtained by including the filedstparams.inc in the source program are used.
This is now described.

4.2.1 The include file dstparams.inc

In order to aid in the writing of robust code to fill and use the DST, an include file is provided which
contains position parameters of all data words in all banks.By inclusion of this include file in user code,
and by using the parameter name to refer to the offset of a given word in a bank rather than the actual
integer itself, the user will gain a considerable degree of protection against any changes to the bank
structure of the DST which do not involve the removal of wordsor shuffling between banks. As this
include file is generated automatically from the bankdoc fora given DST version using an awk script,
the only onus on the user is to ensure the use of the correct version of the file for the version of the DST
being read.

Here is a fragment of thedstparams.incfile

INTEGER IRvxsNVert ,

+ IRvxsId ,

+ IRvxsType ,

+ IRvxsNChgd ,

+ IRvxsNNeut ,

16 Chapter 4. Access Functions

+ IRvxsNUnused ,

+ IRvxsX

PARAMETER (IRvxsNVert = 1,

+ IRvxsId = 1,

+ IRvxsType = 2,

+ IRvxsNChgd = 3,

+ IRvxsNNeut = 4,

+ IRvxsNUnused = 5,

+ IRvxsX = 6

Instead of obtaining the number of reconstructed vertices with the code

NVERT = IQ(LRVXS+1)

one would use

NVERT = IQ(LRVXS+IRvxsNVert)

which will remain correct even if the position of the word changes for any reason.

To access the x positions of the vertices, another feature ofthe include file may be used. Consider the
following extract fromdstparams.inc

INTEGER NIWHRVXS, NFWHRVXS, NIWPRVXS, NFWPRVXS

PARAMETER (NIWHRVXS= 1,NFWHRVXS= 0,NIWPRVXS= 5,NFWPRVXS= 4)

INTEGER NWHRVXS , NWPRVXS

PARAMETER (NWHRVXS = NIWHRVXS + NFWHRVXS)

PARAMETER (NWPRVXS = NIWPRVXS + NFWPRVXS)

The parameterNWHRVXS can be seen to contain the number of header words in the RVXS bank, and
the parameterNWPRVXS to contain the number of data words per vertex. These can be employed when
writing the code in the following way

NVERT = IQ(LRVXS+IRvxsNVert)

IF (NVERT.GT.0) THEN

DO I = 1,NVERT

IOFFSET = NWHRVXS + (I-1)*NWPRVXS

X = Q(LRVXS+IOFFSET+IRvxsX)

ENDDO

ENDIF

This is more robust than the alternative

NVERT = IQ(LRVXS+1)

IF (NVERT.GT.0) THEN

DO I = 1,NVERT

IOFFSET = 1 + (I-1)*9

X = Q(LRVXS+IOFFSET+5)

ENDDO

ENDIF

4.2. Access for FORTRAN Programmers 17

and would not have to be changed if the number of header words or the position of the word containing x
were to change. It is hoped that the advantages of using the parameters indstparams.incare clear. The
parameter names are verbose but quite logical, and also add to the readability of the code.

The filedstparams.incmay be found in /nomad/src/dst/v7r4/include, should the user wish to browse it
for further possibilities.

4.2.2 Direct Navigation with FORTRAN

Some examples of direct navigation will be given, to illustrate how it can be done.

Example 3 To loop through the RVXS bank, printing the z position of the reconstructed vertices (as
was illustrated with C above), could be done with the following code fragment (refer to the bank doc
for the bank structure). Note the use of the parametersIRvxsNVert and IRvxsZ from the include file
dstparams.incjust described.

SUBROUTINE EXAMPLE3

*.

*........ Code used in example 3 of the documentation

*.

IMPLICIT NONE

*.

#include "nomzeb.inc"

#include "nkunit.inc"

#include "dstcom.inc"

INTEGER LDST, LRVXS, NVERT, IOFFSET, I

REAL Z

*.

WRITE(KUNIT6,1000)

*.

*........ Access the DST bank if it exists

*.

LDST = LQ(LNOMAD-6)

IF(LDST.GT.0) THEN

*.

*........... Access the RVXS bank if it exists

*.

LRVXS = LQ(LDST-2)

IF(LRVXS.GT.0) THEN

*.

*.............. Get the number of vertices in list

*.

NVERT = IQ(LRVXS+IRvxsNVert)

IF(NVERT.GT.0) THEN

*.

*................. Loop through the vertices, printing z

*.

18 Chapter 4. Access Functions

IOFFSET = NWHRVXS

DO I = 1,NVERT

Z = Q(LRVXS+IOFFSET+IRvxsZ)

WRITE(6,1001) Z

IOFFSET = IOFFSET + NWPRVXS

ENDDO

ENDIF

ENDIF

ENDIF

*.

RETURN

*.

1000 FORMAT(’ Calling EXAMPLE3 ...’)

1001 FORMAT(’ z position of vertex is ’,F8.3)

*.

END

Example 4 To loop through the MAS banks, finding only those containing information on muons
matched to drift chamber tracks, is more complicated (this example was also given for C above). Here
we check if there is information for a muon matched to a drift chamber track, and if so, print its x and y
position at station 1.

SUBROUTINE EXAMPLE4

*.

*........ Code used in example 4 of the documentation

*.

IMPLICIT NONE

*.

#include "nomzeb.inc"

#include "nkunit.inc"

#include "dstparams.inc"

INTEGER LDST, LMAS, IMUO, IDBLOCK

REAL XSTAT1, YSTAT1

*.

WRITE(KUNIT6,1000)

*.

*........ Access the DST bank if it exists

*.

LDST = LQ(LNOMAD-6)

IF(LDST.GT.0) THEN

*.

*........... Loop through the MAS banks

*.

LMAS = LQ(LDST-3)

DO WHILE (LMAS.GT.0)

4.2. Access for FORTRAN Programmers 19

*.

*............. Check the pointer to muon blocklet

*............. Non-zero means there is muon info

*.

IMUO = IQ(LMAS+5)

IF(IMUO.GT.0) THEN

*.

*................. Check the Identifier of this blocklet

*.

IDBLOCK = IQ(LMAS+IMUO)

IF(IDBLOCK.EQ.501) THEN

*.

*................... Found muo-dch blocklet, print x and y at station 1

*.

XSTAT1 = Q(LMAS+IMUO+IMasMuoDchXS1)

YSTAT1 = Q(LMAS+IMUO+IMasMuoDchXS2)

WRITE(6,1001) XSTAT1, YSTAT1

*.

ENDIF

*.

ENDIF

*.

LMAS = LQ(LMAS)

*.

ENDDO

ENDIF

*.

RETURN

*.

1000 FORMAT(’ Calling EXAMPLE4 ...’)

1001 FORMAT(’ x,y position of muon station 1’,F8.3,1X,F8.3)

*.

END

4.2.3 Access Routines and FORTRAN

The examples given above can also be tackled with access functions. The C access routines which have
been described in section 4.1 have been rendered FORTRAN callable using the cfortran package. Since
the C access routines use pointers to the C structures to navigate, one should include the filepointer.inc
and declare the relevant variables as typePOINTER in the FORTRAN code.

Example 5 First let us recast the loop through the reconstructed vertices using this method.

SUBROUTINE EXAMPLE5

*.

*........ Code used in example 5 of the documentation

*.

20 Chapter 4. Access Functions

IMPLICIT NONE

*.

#include "pointer.inc"

#include "nkunit.inc"

*.

POINTER DST, fDstReference,

+ RVXS, fDstRvxsReference

INTEGER NVERT, fRvxsNvert, I

REAL Z, fRvxsZ

*.

WRITE(KUNIT6,1000)

*.

*........ Access the DST bank if it exists

*.

DST = fDstReference()

IF (DST.NE.0) THEN

*.

*........... Access the RVXS bank if it exists

*.

RVXS = fDstRvxsReference(DST)

IF(RVXS.GT.0) THEN

*.

*.............. Get the number of vertices in list

*.

NVERT = fRvxsNVert(RVXS)

IF(NVERT.GT.0) THEN

*.

*................. Loop through the vertices, printing z

*.

DO I = 1,NVERT

Z = fRvxsZ(RVXS, I)

WRITE(6,1001) Z

ENDDO

ENDIF

ENDIF

ENDIF

*.

1000 FORMAT(’ Calling EXAMPLE5 ...’)

1001 FORMAT(’ z position of vertex is ’,F8.3)

*.

RETURN

END

Example 6 Here is an example of code to access the muon-drift chamber match information using this
method.

4.2. Access for FORTRAN Programmers 21

SUBROUTINE EXAMPLE6

*.

*........ Code used in example 6 of the documentation

*.

IMPLICIT NONE

*.

#include "pointer.inc"

#include "nkunit.inc"

*.

POINTER DST, fDstReference,

+ MAS, fDstFirstMasReference, fMasNextReference

INTEGER fMasBlocklet

REAL fMasMuoDchXS1, fMasMuoDchYS1

*.

WRITE(KUNIT6,1000)

*.

DST = fDstReference()

IF (DST.NE.0) THEN

*.

MAS = fDstFirstMasReference(DST)

DO WHILE (MAS.GT.0)

*.

IF(fMasBlocklet(MAS, 501).GT.0) THEN

WRITE(6,1001) fMasMuoDchXS1(MAS), fMasMuoDchYS1(MAS)

ENDIF

*.

MAS = fMasNextReference(MAS)

*.

ENDDO

*.

ENDIF

*.

RETURN

*.

1000 FORMAT(’ Calling EXAMPLE6 ...’)

1001 FORMAT(’ x,y position of muon station 1 is’,F8.3,1X,F8.3)

*.

END

4.2.4 Higher-level Access to Bank Contents in FORTRAN

For the same reasons as were discussed in the context of C access functions, higher level access routines
are provided to return blocks of information. Such access isprovided through the “dstaccess” package
[2], which is available in the present DST library.
An alternative set of high level FORTRAN access routines with similar functionality is described below.
The existence of the two schemes is historical. They both usethe same common block for storage of

22 Chapter 4. Access Functions

variables, “dstaccess.inc”. The FORTRAN user should probably choose to settle on one of these schemes
and stick to it.

In both schemes, the information requested is placed into a common block which enables the user to
access the individual words by name

The names of words in the commons are constructed strictly from the name of the bank or blocklet (in
the MAS bank case) and the name of the variable given in the bank documentation. For example the
x position of a vertex in the RVXS bank can be referenced through the (real) variable RVXS˙X. The
number of hits on a drift chamber track (blocklet MASDCHDCH in the MAS bank) can be referenced
through the (integer) variable MASDCHDCH˙NHits. Note thatsince these are FORTRAN commons,
the case of the letters in the name is irrelevant (RVXS˙X and rvxs˙x should work).

In addition to the FORTRAN access routines provided by the “dstaccess” package [2], three additional
routines are provided in the library, constituting the second scheme mentioned above. Two,DSTGet-
MasBlock and DSTGetMasSubBlockare for use with the MAS bank information, while the third,
DSTGetBlock is for use with any of the other banks. These routines take three arguments, as follows:

• Argument 1: an integer specifying whether the bank address will be passed as a ZEBRA link (1),
or as a C pointer (2).

• Argument 2: the value of the link or pointer

• Argument 3: For the MAS bank, the blocklet ID of the match pair required (e.g. 501 for muon
chambers matched to drift chambers). For all other banks, the index of the blocklet required. Note
that if the bank has header info, setting this argument to zero causes the header information to be
returned.

To use these routines, the user should include in the callingcode the include filedstcom.inc, and in
addition the include filedstaccess.inc. dstcom.incprovides integer parameters which map to the match
pair blocklet IDs, so that one can refer toMASMUODCH rather than 501 when making the call to
DSTGetMasBlock. dstaccess.inccontains the common block into which the individual DST words are
returned.

Examples will make all of this much clearer.

Example 7 Suppose that one wishes to loop through all of the vertices inthe RVXS bank, and that one
works with the ZEBRA links to the bank. The following code could be used:

SUBROUTINE EXAMPLE7

*.

*........ Code used in example 7 of the documentation

*.

IMPLICIT NONE

*.

#include "nkunit.inc"

#include "dstcom.inc"

#include "dstaccess.inc"

INTEGER LRVXS, RVXSREF, I

REAL X, Y, Z

*.

4.2. Access for FORTRAN Programmers 23

WRITE(KUNIT6,1000)

*.

*........ Get the link to the RVXS bank

*.

LRVXS = RVXSREF()

IF (LRVXS.GT.0) THEN

*.

*........... Unpack the bank header to get the number of vertices

*.

CALL DSTGetBlock(1, LRVXS, 0)

*.

*........... Now loop through the vertices if there are any

*.

IF (Rvxs_NVert.GT.0) THEN

*.

DO I = 1,Rvxs_NVert

*.

CALL DSTGetBlock(1, LRVXS, I)

X = Rvxs_X

Y = Rvxs_Y

Z = Rvxs_Z

WRITE(KUNIT6,1001) I, X, Y, Z

*.

ENDDO

*.

ENDIF

*.

ENDIF

*.

RETURN

*.

1000 FORMAT(’ Calling EXAMPLE7 ...’)

1001 FORMAT(’ Vertex ’,I3,’ X = ’,F8.3,’ Y = ’,F8.3,’ Z = ’,F8.3)

*.

END

Example 8 If instead of using ZEBRA links in the last example, one uses pointers, the code becomes
the following:

SUBROUTINE EXAMPLE8

*.

*........ Code used in example 8 of the documentation

*.

IMPLICIT NONE

*.

#include "nkunit.inc"

24 Chapter 4. Access Functions

#include "dstcom.inc"

#include "dstaccess.inc"

POINTER DST, fDstReference, RVXS, fDstRvxsReference

INTEGER I

REAL X, Y, Z

*.

WRITE(KUNIT6,1000)

*.

*........ Access the DST bank if it exists

*.

DST = fDstReference()

IF (DST.GT.0) THEN

*.

*........... Access the RVXS bank if it exists

*.

RVXS = fDstRvxsReference(DST)

IF (RVXS.GT.0) THEN

*.

*.............. Unpack the bank header to get the number of vertices

*.

CALL DSTGetBlock(2, RVXS, 0)

*.

*.............. Now loop through the vertices if there are any

*.

IF (Rvxs_NVert.GT.0) THEN

*.

DO I = 1,Rvxs_NVert

*.

CALL DSTGetBlock(2, RVXS, I)

X = Rvxs_X

Y = Rvxs_Y

Z = Rvxs_Z

WRITE(KUNIT6,1001) I, X, Y, Z

*.

ENDDO

*.

ENDIF

*.

ENDIF

*.

ENDIF

*.

RETURN

*.

1000 FORMAT(’ Calling EXAMPLE8 ...’)

4.2. Access for FORTRAN Programmers 25

1001 FORMAT(’ Vertex ’,I3,’ X = ’,F8.3,’ Y = ’,F8.3,’ Z = ’,F8.3)

*.

END

Now for two examples using the MAS banks.

Example 9 This code performs the same function as does that of example 4, obtaining information on
muon track matched to drift chamber track.

SUBROUTINE EXAMPLE9

*.

*........ Code used in example 9 of the documentation

*.

IMPLICIT NONE

*.

#include "nomzeb.inc"

#include "nkunit.inc"

#include "dstcom.inc"

#include "dstaccess.inc"

INTEGER LDST, LMAS, IMUO, IDBLOCK

REAL XSTAT1, YSTAT1

*.

WRITE(KUNIT6,1000)

*.

*........ Access the DST bank if it exists

*.

LDST = LQ(LNOMAD-6)

IF(LDST.GT.0) THEN

*.

*........... Loop through the MAS banks

*.

LMAS = LQ(LDST-3)

DO WHILE (LMAS.GT.0)

*.

*............. Check the pointer to the muon blocklet

*............. Non-zero means that it exists

*.

IMUO = IQ(LMAS+5)

IF (IMUO.GT.0) THEN

*.

*................. Check the Identifier of this blocklet

*................. Note that parameter MASMUODCH (in dstcom.inc) is 501

*.

IDBLOCK = IQ(LMAS+IMUO)

IF(IDBLOCK.EQ.MASMUODCH) THEN

*.

26 Chapter 4. Access Functions

*................... Found muo-dch blocklet, print x and y at station 1

*.

CALL DSTGetMasBlock(1, LMAS, MASMUODCH)

XSTAT1 = MasMuoDch_XS1

YSTAT1 = MasMuoDch_YS1

WRITE(6,1001) XSTAT1, YSTAT1

*.

ENDIF

*.

ENDIF

*.

LMAS = LQ(LMAS)

*.

ENDDO

ENDIF

*.

RETURN

*.

1000 FORMAT(’ Calling EXAMPLE9 ...’)

1001 FORMAT(’ x,y position of muon station 1’,F8.3,1X,F8.3)

*.

END

Example 10 Finally, the previous example using pointers.

SUBROUTINE EXAMPLE10

*.

*........ Code used in example 10 of the documentation

*.

IMPLICIT NONE

*.

#include "pointer.inc"

#include "nkunit.inc"

#include "dstcom.inc"

#include "dstaccess.inc"

*.

POINTER DST, fDstReference,

+ MAS, fDstFirstMasReference, fMasNextReference

INTEGER fMasBlocklet

*.

WRITE(KUNIT6,1000)

*.

DST = fDstReference()

IF (DST.NE.0) THEN

*.

MAS = fDstFirstMasReference(DST)

4.3. Utility Routines 27

DO WHILE (MAS.GT.0)

*.

IF(fMasBlocklet(MAS, MASMUODCH).GT.0) THEN

CALL DSTGetMasBlock(2, MAS, MASMUODCH)

WRITE(6,1001) MasMuoDch_XS1, MasMuoDch_YS1

ENDIF

*.

MAS = fMasNextReference(MAS)

*.

ENDDO

*.

ENDIF

*.

RETURN

*.

1000 FORMAT(’ Calling EXAMPLE10 ...’)

1001 FORMAT(’ x,y position of muon station 1 is’,F8.3,1X,F8.3)

*.

END

4.3 Utility Routines

Some routines to make use of the DST structure easier are provided, and will be described here. The list
will grow with time.

The following C routines are also FORTRAN callable by prepending an f to the routine name, and
including pointer.inc in the calling FORTRAN code. C programmers should remember to include the
file dstgen.hin their source code.

4.3.1 General utility routines

• int *MasBlocklet(˙Mas mas, int blockid) Returns a non-zero value if the object (MAS bank)
pointed to bymascontains a blocklet with identifierblockid (in fact returns a pointer to the block-
let, of type˙MasXxxYyy whereXxx is the subdetector supplying the information, e.g.Trd , and
Yyy is the seed subdetector). Otherwise returns 0. This provides a convenient way to check
whether the MAS bank contains information from the subdetector of interest. TECHNICAL
NOTE: the type of the pointers which are used internally by the C structures which map to the
MAS bank blocklets changed from DST version v7r1 to v7r2. In version v7r1, the pointers were
of the type˙MasXxx, i.e. the pointer was independent of the seed subdetector for the blocklet.
This was possible because unions were used in defining the C structures. In versions v7r2 on-
wards, use of unions had to be abandoned for a technical reason when blocklets could become
variable in length, and as a consequence there are now separate pointers to each different type of
blocklet, of the form˙MasXxxYyy, and the C structures have changed in internal form. Those
users who in their C code directly accessed the members of these structures rather than use the
access routines provided by the package will find that they have to change their code. This change
was unfortunately unavoidable.

28 Chapter 4. Access Functions

• int NumReconTracks(void) Returns the total number of reconstructed tracks in the event, ob-
tained by counting the Mas banks containing 101 blocklets.

• int PrimaryTrack(˙Mas mas) Returns 1 if the object pointed to bymasis attached to the primary
vertex (can be charged or neutral), and 0 otherwise.

• int PrimaryChargedTrack(˙Mas mas) Returns 1 if the object pointed to bymas is charged and
attached to the primary vertex, and 0 otherwise.

• int PrimaryNeutralTrack(˙Mas mas) Returns 1 if the object pointed to bymas is neutral and
attached to the primary vertex, and 0 otherwise.

Functions are provided to return certain quantities from the FZ header of the event. The FZ header on
a DST tape is presently identical to that on the full recon output tape, so in principle this information is
already readily available. For the FORTRAN programmer, thecommon /NDEVENT/ provided by util
may be accessed. For the C programmer, inclusion of the util header filerzio.h will allow the structure
pointed to byEVT˙header to be used. For convenience, the DST library contains the following C access
routines for accessing some of the header words. All may be called from FORTRAN by prepending the
function name with “f” and declaring the resulting functionas INTEGER.

• int DstRunNumber() Returns the current run number.

• int DstEventNumber() Returns the current event number.

• int DstTrigMask() Returns the undelayed trigger mask (as a bitted word, in which bits 11 to 16
contain the relevant information). This function simply uses the util function RzGetTriggerMask().

• int DstTrigMaskDel() Returns the delayed trigger mask (as a bitted word, in which bits 27 to 32
contain the relevant information). This function simply uses the util function RzGetTriggerMask-
Int().

• int DstOnlineError() Returns the online error word.

• int DstOfflineError() Returns the offline error word.

The following two routines are provided to aid calculation of the magnitude and error of the 3-momentum
of an object given the components. Whilst the first is trivial, the second may be of use when the upper
diagonal of the covariance matrix for (px, py, pz) is available. It uses the routinetrack˙cartesian from
the extrapolator package.

• DstPxPyPzToP(float *p)Returns the magnitude of the 3-momentum given a pointer to the word
containingpx (and assuming the 3 components are stored contiguously).

• DstCovPxPyPzToEP(float *p, float *ep)Returns the error on the magnitude of the 3-momentum
given pointers to the word containingpx and the word containingCov(px, px) (and assuming the
3 momentum components, and the 6 upper diagonal elements of the covariance matrix, are stored
contiguously, as they are on the DST).

4.3. Utility Routines 29

4.3.2 Extended access routines

Also available are some routines to return useful quantities such as momentum and error on momentum
as thoughthese quantities were stored in the DST structure (they havein fact been removed from the
structure from DST v7r1 onwards as they are calculable from the quantities which are stored there). The
list is (all are of typefloat):

• MasDchDchPB(˙Mas Mas)Momentum of track at beginning vertex

• MasDchDchEPB(˙Mas Mas)Error on momentum of track at beginning vertex

• MasDchDchPF(˙Mas Mas)Momentum of track at first hit

• MasDchDchEPF(˙Mas Mas)Error on momentum of track at first hit

• MasDchDchPL(˙Mas Mas)Momentum of track at last hit

• MasDchDchEPL(˙Mas Mas)Error on momentum of track at last hit

• MasDchDchPE(˙Mas Mas)Momentum of track at end vertex

• MasDchDchEPE(˙Mas Mas)Error on momentum of track at end vertex

• StksPB (˙Stks Stks, int i)Momentum of simulated tracki at beginning vertex

• StksPF (˙Stks Stks, int i)Momentum of simulated tracki at first hit

• StksPL (˙Stks Stks, int i)Momentum of simulated tracki at last hit

• StksPE (˙Stks Stks, int i)Momentum of simulated tracki at end vertex

4.3.3 Access routines for packed words

As some of the words in the DST structure are packed using base10 multiplicative factors, routines are
provided which look like the standard access routines to thepacked word as a whole, but which extract
particular quantities from that word. By inspecting the bankdoc (or chapter 5) for a description of the
contents of the relevant words, the function of the following verbosely named access routines should
become self-evident.

For unused hits around a vertex in the RVXS bank:

• int RvxsNUnusedU15 (˙Rvxs Rvxs, int i)

• int RvxsNUnusedU10 (˙Rvxs Rvxs, int i)

• int RvxsNUnusedU05 (˙Rvxs Rvxs, int i)

• int RvxsNUnusedY15 (˙Rvxs Rvxs, int i)

• int RvxsNUnusedY10 (˙Rvxs Rvxs, int i)

• int RvxsNUnusedY05 (˙Rvxs Rvxs, int i)

• int RvxsNUnusedV15 (˙Rvxs Rvxs, int i)

30 Chapter 4. Access Functions

• int RvxsNUnusedV10 (˙Rvxs Rvxs, int i)

• int RvxsNUnusedV05 (˙Rvxs Rvxs, int i)

For packed muon chamber hits in the 101 blocklet:

• int MasDchDchMuHitsX1 (˙Mas Mas)

• int MasDchDchMuHitsX2 (˙Mas Mas)

• int MasDchDchMuHitsY1 (˙Mas Mas)

• int MasDchDchMuHitsY2 (˙Mas Mas)

• int MasDchDchMuHitsMuV (˙Mas Mas)

• int MasDchDchMuHitsNFX1 (˙Mas Mas)

• int MasDchDchMuHitsNFX2 (˙Mas Mas)

• int MasDchDchMuHitsNFY1 (˙Mas Mas)

• int MasDchDchMuHitsNFY2 (˙Mas Mas)

For packed drift chamber veto and forward and backward hits for a track in the 101 blocklet:

• int MasDchDchNDcVHitBTube (˙Mas Mas)

• int MasDchDchNDcVHitBU50 (˙Mas Mas)

• int MasDchDchNDcVHitBY50 (˙Mas Mas)

• int MasDchDchNDcVHitBV50 (˙Mas Mas)

• int MasDchDchNDcVHitBU25 (˙Mas Mas)

• int MasDchDchNDcVHitBY25 (˙Mas Mas)

• int MasDchDchNDcVHitBV25 (˙Mas Mas)

• int MasDchDchNDcVHitFTube (˙Mas Mas)

• int MasDchDchNDcVHitFU50 (˙Mas Mas)

• int MasDchDchNDcVHitFY50 (˙Mas Mas)

• int MasDchDchNDcVHitFV50 (˙Mas Mas)

• int MasDchDchNDcVHitFU25 (˙Mas Mas)

• int MasDchDchNDcVHitFY25 (˙Mas Mas)

• int MasDchDchNDcVHitFV25 (˙Mas Mas)

4.3. Utility Routines 31

4.3.4 Routines for backwards compatibility

The following are provided for backward compatibilty. The word names were changed in MAS blocklet
501 in going from versions v1r0 to v7r1 of the library, in order to be more consistent with other blocklets
(basically the lettersMu were dropped, e.g.MasMuoDchXMuS1 becameMasMuoDchXS1). The
functions below, which utilise the old form of the word, willif used return the new word.

• float MasMuoDchXMuS1 (˙Mas Mas)

• float MasMuoDchYMuS1 (˙Mas Mas)

• float MasMuoDchZMuS1 (˙Mas Mas)

• float MasMuoDchXMuS2 (˙Mas Mas)

• float MasMuoDchYMuS2 (˙Mas Mas)

• float MasMuoDchZMuS2 (˙Mas Mas)

• float MasMuoDchSlXMuS1 (˙Mas Mas)

• float MasMuoDchSlYMuS1 (˙Mas Mas)

• float MasMuoDchSlXMuS2 (˙Mas Mas)

• float MasMuoDchSlYMuS2 (˙Mas Mas)

Chapter 5: The Banks in More Detail

The general policy in filling the DST is to take as much information as possible exactly “as is” from
the phase2 ZEBRA structure. The contents of the vast majority of the words can be deduced from the
information in the bankdoc. However, in some cases further explanation and clarification of what is in
a word is required. In this chapter all words on the DST are described, in more detail than the bankdoc
where necessary. For each word, the description includes anindication of whether the word is integer (I)
or floating point (F).

5.1 The FZ Header

The FZ Header that is present for all ZEBRA files throughout production is preserved and propagated to
DST ZEBRA files as well. Therefore these words are available to users along with the contents of the
DST structure itself – indeed this is the way that most peopleobtain the run and event number, which are
not stored in the DST banks themselves.

Access to the information in the FZ header may be obtained in one of several ways.

• For a FORTRAN programmer, the include filendevent.incmay be used. This contains the com-
mon block /NDEVENT/, into which many of the words in the FZ header have been copied upon
standard input of an event with a program such ascamel. For example, the run and event numbers
are available in the wordsIRUN andIEVENT .

• Also for a FORTRAN programmer, the include filenzlink.inc may be used (this is also obtained
if the file nzbank.inc has been included). The wordLHEAD holds the ZEBRA link to the FZ
header, and words are obtained by referencing the IQ array using this link. For example, the run
and event numbers via this method may be found inIQ(LHEAD+1) and IQ(LHEAD+2) . All
header words can be accessed in this way.

• For C programmers, the header filerzio.h (from the util package) may be used. This provides
access to a structure pointed to byEVT˙header. To get the run and event numbers, the appropriate
members of that structure,EVT˙header->run˙number andEVT˙header->event˙number can
be accessed.

• A very limited subset of these words can be accessed using DSTlibrary access functions. See
chapter 4 for more details.

There are two important event quality words, present in the FZ header of an event, which users should
be aware of. These are

• IQ(LHEAD+24) The so-called “online error” word. This will be non-zero if there is raw data
missing in the event for some of the subdetectors. C programmers following the prescription
above will find this word withEVT˙header->online˙error .

• IQ(LHEAD+29) The so-called “offline error” word. This will be non-zero if the event has failed
the “density cuts” or if there have been problems in the matching process. Since in these cases full
reconstruction will not have been done but the event may still appear in the output data set, it is
important to check this word. Its actual value conveys information on which condition caused it to
fail.

32

5.2. The DST bank 33

– Bit 0 SetFailed the drift chamber veto cut.

– Bit 1 SetFailed the cut on the number of drift chamber hits.

– Bit 2 SetFailed the wire density cut.

– Bit 3 SetFailed the cut on the number of TRD hits.

– Bit 16 SetProblem with the matching process (for example, failed to converge).

Note that C programmers can currently find this word with the inappropriately namedEVT˙header-
>online˙stream (at least up to util v7r5). This is because the word was originally earmarked for
another use, and has subsequently been appropriated. A namechange in future util versions is
called for.

5.2 The DST bank

The DST bank is simply a hanger onto which the other banks in the DST structure are attached. As such,
it contains just one data word:

• Version The DST version number, a floating point number containing the version and release
number. (F)

The version number may be obtained using

(int) Version

The release number may be obtained with

(int) 10*(Version - (int) Version)

Remember when comparing the word itself with a known versionnumber (e.g. 7.4) to be wary of
roundoff. It is better to extract the integer version and release as above and look at those.

5.3 The EVS bank

The purpose of the EVS bank is to provide some global information on the event. Some of the infor-
mation, as pointed out below, is meant to be indicative only,meaning that to make sophisticated cuts,
especially on the energy variables, the user is advised to access the detailed information elsewhere on the
DST.

• IndxPrim All words on the DST which are advertised as “indices” give the index of an object
in another bank. If one considers the RVXS bank to consist of atable where each row contains
information on one reconstructed vertex, thenIndxPrim tells the user which row to look at in order
to find information on the primary vertex for the event. If this word is zero, there is no primary. (I)

• NVert This is simply the number of vertices in the event with more than one track emerging, with
the exception that the primary is always counted, even if it has only one track. Vertices may have
a charged or neutral track incident. The information is obtained by examining the RVXS bank. (I)

• NHang All reconstructed tracks with beginning vertex of type 9 arecounted. (I)

• NChgd All charged tracks (MAS blocklets 101) from primary are counted. (I)

• NNeut All neutral tracks (MAS blocklets 104) from primary are counted. (I)

34 Chapter 5. The Banks in More Detail

• NCalUn All neutral CAL clusters (MAS blocklets 404) which are not accompanied by a neutral
track (MAS blocklet 104) are counted. (I)

• NHcaUn All unassociated HCAL clusters (MAS blocklets 909) are counted. (I)

• NTrig1 Counts the number of in-time hits in plane 1 of the trigger counters. Since there is no
match done for the trigger counters, the hits in the DASC bankare used. The time windows are
taken from the RHST bank in the run header structure for the trigger. (I)

• NTrig2 The same asNTrig1 only for trigger plane 2. (I)

• NVeto Counts the number of in-time hits for the veto counters (the “real” veto, not the first drift
chamber). Uses the information in MAS blocklets 701 and 707.(I)

• NCellsCounts the number of calorimeter cells above threshold. Uses the information in the phase1
DACA bank (no additional threshold above that used to fill theDACA bank is imposed). (I)

• NSlabsCounts the total number of HCAL slabs which are hit. This is achieved by accessing the
information in the DAHC bank and finding those slabs with non-zero energy deposition. (I)

• NMuMat This word gives the number of “good” muons in the event. It is filled by counting all
charged tracks in the event which have the wordProbMu in the 101 blocklet (see below) set to
1.0. Note that this behaviour isdifferentto that in version v7r1 of the DST, where the word had the
nameNMuTrk and was filled by counting 501 blocklets rather than “good” muons. This was also
the case for version v1r0 DSTs. Note that situations in which2 muons are flagged in this word
should not be treated as “golden” dimuons on the present DST,as the ambiguity treatment at the
level of phase2 is not fully developed. (I)

• NRemain The number of drift chamber hits which were left over after track reconstruction was
completed is stored, the information being taken from word 5of the DDCH bank. (I)

• Overflow This word is a copy of word 12 of the SEVT bank. For Monte Carlo events, it flags the
condition that a buffer overflow during the GENOM processingof this event has caused informa-
tion to be lost. (I)

• NDcVetoThe number of hits in the drift chamber veto chamber. This andthe following three words
are used in performing the filtering during processing. Theyare taken from the corresponding
words in the BDCH bank. (I)

• NDcHit The total number of (in-time) hits in all drift chambers. (I)

• NDensity The wire density, multiplied by 1000. (I)

• NTrdHit The total number of TRD hits. (I)

• ECells The energy deposited in all the cells stored in the phase1 DACA bank is summed. (F)

• ESlabsThe energy deposited in all the scintillators stored in the DAHC bank is summed. (F)

• Weight The Monte Carlo weight assigned to this event. Since no attempt has yet been made at
the production stage to combine event samples from different generators into a single data set, this
weight is always 1.0. (F)

5.4. The RVXS bank 35

5.4 The RVXS bank

The RVXS bank is essentially a summary in tabular form of the information in the VTX structure. All
vertices which are present in the VTX structure are present in the RVXS bank with one exception: end
point vertices (those with vertex type 10) arenot stored except when there is a neutral associated to the
vertex – this happens in phase2 at a low level and so some type 10 vertices may be found on the DST.

• NVert Indicates how many vertices are stored in the bank.

For each vertex, the following words are stored.

• Id The vertex identifier stored in word 20 of the VTX bank. (I)

• Type The vertex type stored in word 21 of the VTX bank. (I) Valid types are:

: 1 Primary vertex

: 2 Secondary

: 3 Decay (one track in, several out)

: 4 V0

: 5 Brem

: 6 Scatter (one track in, one track out)

: 7 Delta Ray

: 8 Hard Scatter

: 9 Beginning (hanger)

: 10 End

: 11 Neutral Hanger (do not appear on DST)

: 12 Out

• NChgd Counts all charged tracks associated to the vertex (by looping over the TRK banks). (I)

• NNeut Counts all neutral tracks associated to the vertex (by looping over the TRK banks). (I)

• NUnusedUnused hits in the vicinity of the vertex. This is a packed word, filled as follows:

1000000*(No. Hits in box of size +- 15cm)

+ 1000*(No. Hits in box of size +- 10cm)

+ (No. Hits in box of size +- 5cm)

Each "No. Hits in box" = 100*(No. U Hits) (0-9)

+ 10*(No. Y Hits) (0-9)

+ (No. V Hits) (0-9)

In this context, a “box” of sizel extends in z a distancel before and after the z position of the
vertex. For the other dimensions, a road of the same size is defined,±l, oriented separately with
respect to each of the 3 orientations of the wires (U,Y,V) forthe purpose of counting unused hits
within the road. Access routines to unpack the different components of this word are provided -
see section 4.3.3. (I)

36 Chapter 5. The Banks in More Detail

• X The x position of the vertex. (F)

• Y The y position of the vertex. (F)

• Z The z position of the vertex. (F)

• Chi2 χ2 of vertex fit. (F)

• Chi2MisM χ2 for the hypothesis that a V0 “points” to the primary vertex (2d.o.f.). The vertex-
fitting package constructs a “mismatch vector”~v between a projected V0 track and the primary
vertex at the point of closest approach: “pointing” is equivalent to the hypothesis that this vector
~v = ~0 (Memo 96-019, section 8). This word has been added to the DST (in v7r4) because the
necessary calculations use both track and vertex error matrices, and the latter are not recorded to
the DST. This word is identically zero for non-V0 vertices.

5.5 The MAS bank

The MAS banks summarise the information in the match table produced by phase 2 processing, there
being essentially one MAS bank for each object, or line of thematch table.
The first set of words in the MAS bank are so-called “pointers”to the information stored in the bank
for each subdetector and “pseudo” subdetector. A subdetector is a physical NOMAD subdetector, of
which there are 10 for the purposes of the present DST (1=DCH,2=TRD, 3=PRS, 4=CAL, 5=MUO,
6=SCI, 7=VET, 8=FCA, 9=HCA, 10=SIT). The SIT of “NOMAD Star”pointer is always empty in the
present DST version. “Pseudo” subdetectors are blocklets with identifiers greater than 10 and are used to
store additional information about a match object in a manner that can be handled similarly to the “real”
subdetector match information. Pseudo subdetectors in thecontext of the present DST are 11=Feldman
Clustering, 12=Extrapolator information and 13=Padova Bremsstrahlung Strip information.
If a pointer to a given subdetector is non-zero, then that subdetector has contributed information to this
object. The value of the pointer is the offset within the bankof the word containing the blocklet type for
the subdetector – subsequent words in the bank give the data for that blocklet. There can only be one
blocklet per subdetector in any given object. For example, if the pointer to TRD info is non-zero, the
blocklet pointed to will be a 201 (TRD track matched to drift chamber track) or a 202 (TRD standalone
track) but not both.
The information stored for each blocklet will now be coveredin some detail. The order of the words in
the bank has not necessarily been preserved in this discussion, since occasionally they are grouped by
subject.

5.5.1 Blocklet 101

The 101 blocklets store information about reconstructed charged tracks. The majority of these words are
derived directly from the TRK bank; it is indicated where this is not the case.

• DchId The track reconstruction number (this corresponds to the number provided byDcTrackRec
in the drift chamber package). (I)

• IndxVxsB This word gives the index in the RVXS bank of the beginning vertex for this track. On
the DST, an “index” can be thought of as a row number, or line, in a table. If one considers the
RVXS bank to consist of a table where each row contains information on one reconstructed vertex,
then IndxVxsB tells the user which row to look at in order to find informationon the beginning
vertex for this track. (I)

5.5. The MAS bank 37

• IndxVxsE Index of end vertex in RVXS bank. See the previous discussionof IndxVxsB. Note
that this word may be set to zero in cases where the end point vertex type is 10, since these vertices
are not retained in the RVXS bank. (I)

• IndxStks Index of simulated track in STKS bank. This can only be non-zero for Monte Carlo
data. The TRK banks contain a reference link to the corresponding STRK bank containing the
simulated track, where a correspondence has been established. This word is filled by extracting
the ID of the simulated track from the appropriate STRK bank,and matching it with the entries in
the STKS bank. This word will not be filled inall cases. (I)

• NHits The number of hits on the track. (I)

• NDF The number of degrees of freedom used for the track fit. (I)

• Charge The charge of the track. (I)

• Type Geant particle code of model used in the the track fit. Note that the fact that this stores the
code corresponding to themodel means that for both electrons and positrons this word will have
the code for an electron (since the electron model is used forfitting in both cases). Thus this word
should not be used to determine the charge of the particle -Charge should be used instead. (I)

• NDcVHitB A packed word giving information on hits in the veto drift chamber around the point at
which an extrapolation of the track backwards intersects it, for two given radii. Also the number of
hits collected in a road backwards from the start of the trackis included. The format is as follows:

1000000*(No. Hits in Tube 3cm wide, 50cm long)

+ 1000*(No. Hits in Dc Veto, 5.0cm radius circle)

+ (No. Hits in Dc Veto, 2.5cm radius circle)

No. Dc Veto Hits = 100*(No. U Hits) (0-9)

+ 10*(No. Y Hits) (0-9)

+ (No. V Hits) (0-9)

As this information is not stored in the current phase2 output structure, the DST code obtains this
information by using code provided by A. Geiser and A. Bueno,which accesses the DADC bank.
Access routines to unpack the different components of this and the following word are provided -
see section 4.3.3 (I).

• NDcVHitF A packed word giving information of the same nature as the previous wordND-
cVHitB , only in this case the track is followed forward from its end point. (I)

• Chi2 Theχ2 of the track fit. (F)

• ProbChi2 Theχ2 probability of the track fit. (F)

As a result of the fitting procedure for tracks and vertices, the momentum (and associated error matrix)
for a track is determined at several points: at the plane of the first and last drift chamber hits associated
with the track, and at the beginning and end point vertices which the track connects. If the track is
a hanger or leaves the chamber, the first or last hit may of course correspond to the beginning or last
vertex. The TRK banks store, at the beginning and end vertices of the track, the fitted 3-momentum and

38 Chapter 5. The Banks in More Detail

the 6 elements of the upper diagonal of the covariance matrixfor the 3-momentum. At the first and last
hits, the quantities stored are1/p, x, y, tx, ty and corresponding upper diagonal of the covariance matrix.
tx andty are the slopes of the track in thex − z andy − z plane at the point (x, y, z). For consistency,
on the DST the first and last hit parameters are transformed topx, py, pz, using utility routines from the
extrapolator package.

• PxB The x component of the momentum at the beginning vertex. (F)

• PyB The y component of the momentum at the beginning vertex. (F)

• PzB The z component of the momentum at the beginning vertex. (F)

• EPxPxBVpx
= cov(px, px) at the beginning vertex. (F)

• EPxPyB cov(px, py) at the beginning vertex. (F)

• EPxPzBcov(px, pz) at the beginning vertex. (F)

• EPyPyBVpy
= cov(py, py) at the beginning vertex. (F)

• EPyPzBcov(py , pz) at the beginning vertex. (F)

• EPzPzBVpz
= cov(pz , pz) at the beginning vertex. (F)

• PxF The x component of the momentum at the first hit. (F)

• PyF The y component of the momentum at the first hit. (F)

• PzF The z component of the momentum at the first hit. (F)

• EPxPxFVpx
= cov(px, px) at the first hit. (F)

• EPxPyF cov(px, py) at the first hit. (F)

• EPxPzFcov(px, pz) at the first hit. (F)

• EPyPyFVpy
= cov(py, py) at the first hit. (F)

• EPyPzFcov(py, pz) at the first hit. (F)

• EPzPzFVpz
= cov(pz, pz) at the first hit. (F)

• PxL The x component of the momentum at the last hit. (F)

• PyL The y component of the momentum at the last hit. (F)

• PzL The z component of the momentum at the last hit. (F)

• EPxPxL Vpx
= cov(px, px) at the last hit. (F)

• EPxPyL cov(px, py) at the last hit. (F)

• EPxPzL cov(px, pz) at the last hit. (F)

• EPyPyL Vpy
= cov(py, py) at the last hit. (F)

5.5. The MAS bank 39

• EPyPzL cov(py , pz) at the last hit. (F)

• EPzPzLVpz
= cov(pz , pz) at the last hit. (F)

• PxE The x component of the momentum at the end vertex. (F)

• PyE The y component of the momentum at the end vertex. (F)

• PzE The z component of the momentum at the end vertex. (F)

• EPxPxEVpx
= cov(px, px) at the end vertex. (F)

• EPxPyE cov(px, py) at the end vertex. (F)

• EPxPzEcov(px, pz) at the end vertex. (F)

• EPyPyEVpy
= cov(py, py) at the end vertex. (F)

• EPyPzEcov(py , pz) at the end vertex. (F)

• EPzPzEVpz
= cov(pz , pz) at the end vertex. (F)

The spatial position of the first and last hits on each track are stored, along with the errors on the position
of the first hit. Also, the track length using the first and lasthits is available in the TRK bank, and
propagated to the DST.

• XF The x position of the first hit on the track. (F)

• YF The y position of the first hit on the track. (F)

• ZF The z position of the first hit on the track. (F)

• EXXF cov(x, x) at the first hit on the track. (F)

• EXYF cov(x, y) at the first hit on the track. (F)

• EYYF cov(y, y) at the first hit on the track. (F)

• XL The x position of the last hit on the track. (F)

• YL The y position of the last hit on the track. (F)

• ZL The z position of the last hit on the track. (F)

• Length Track length (cm). (F)

Both the purity and efficiency words which characterize the match between a reconstructed and simulated
track in Monte Carlo events are now filled in the TRK banks and can be transferred to the DST.

• Purity Purity of match to simulated track. (F)

• Efficm Efficiency of match to simulated track. (F)

40 Chapter 5. The Banks in More Detail

For those tracks which have been identified as being an electron, a refit of the track using the electron
hypothesis is performed by the reconstruction, and the track parameters recorded in the TRK bank will
be those of the electron fit. In order to have available some momentum information assuming the track
was a pion, in such cases the magnitude of the momentum from the pion fit is stored in the TRK bank
and transferred to wordPPion on the DST. If the electron fit was not employed, the wordPPion will
contain 0.0, as in the TRK bank.

• PPionMomentum from pion fit. (F)

The following six words give breakpoint information for thetrack. For a detailed discussion of their
contents, MEMO 96-016 [4] should be consulted. Note that thelast four words only contain useful
information in those cases where the number of hits on the track, NHits, is greater than 21. In other
cases,FChisq7 andFChisq9 contain 10000000. andDiff7Rm1 andDiff9Rm1 contain -9999.0 (as in
the TRK bank).

• Ck Mismatchedχ2. (F)

• Fk Fruhwirth. (F)

• FChisq7Fisher F7. (F)

• Diff7Rm1 Back-front 1/R difference inσ for the 7 parameter case. (F)

• FChisq9Fisher F9. (F)

• Diff9Rm1 Back-front 1/R difference inσ for the 9 parameter case. (F)

The final word in the 101 blocklet gives thet0 of the track at the first hit. It is stored primarily to aid
in studies of the FCAL, where timing is not as accurately determined and tracks in the drift chambers
emerging from the FCAL will not have a well determined vertex.

• TZero Thet0 of the track at the first hit. (F)

The muon information which is stored in the 101 blocklet is derived directly from the DMMU bank.
Apart from the wordsProbMu andProbMuH , the other words come from the muon veto blocklet (the
muon veto blocklet in the DMMU bank has ID of –1).

• MuHits This word summarises the hits in the x and y projections in each station for this track, as
well as the hits in the muon veto scintillators. It is constructed as follows: if the number of hits
in projection and station are denotedNX1, NY1, NX2, NY2 (with obvious notation), andNV is
the sum of the hits in each of the 4 muon veto scintillators, thenMuHits = 10000 × NX2 +
1000×NY2+100×NX1+10×NY1+NV. The relevant words in the muon veto blocklet
are 8 and 9. Note that unfortunately the ordering of station and projection used in constructing this
word differs from that used in word 9 of the muon veto blockletin the DMMU bank. Note also
that the muon veto scintillators were not present in 1995. Access routines to unpack the different
components of this and the following word are provided - see section 4.3.3 (I).

• MuHitsNF This word is in the same format as the previous word,MuHits , only in this case only
hits which have not been flagged as belonging to a matched muonare counted. Thus the format
is MuHits = 10000 × NX2 + 1000 × NY2 + 100 × NX1 + 10 × NY1 In this case, as
the information is not stored in the current phase2 output structure, the DST code calls the muon
library routine CountMuNotFl to obtain the information. (I)

5.5. The MAS bank 41

• ProbHit1 Probability to hit muon station 1. (F)

• ProbHit2 Probability to hit muon station 2. (F)

• ProbHitG Probability to hit gap in muon chambers in station 1. (F)

• ProbHitV Probability to hit muon veto counters. (F)

• ProbRch1Probability to reach muon station 1. (F)

• ProbRch2Probability to reach muon station 2. (F)

• ProbMu Probability to be a muon from muon chambers. This word is set from the global quality
word (word 5) of the DMMU bank. If the global quality word is 0 (identified muon) thenProbMu
is set to 1.0. The information contained in this word is presently equivalent to that in the word
Phmu in the DMMU bank muon veto blocklet, and also flagging of a muonwith this word should
correspond to the GEANT particle code for the track being setto 5 or 6. (F)

The wordProbMuH is the result of the output of the algorithm due to Gary Feldman which sets out
to identify muons using information from ECAL and HCAL. Thisis a direct copy of the corresponding
word in the phase2 DMHC bank.

• ProbMuH Probability to be a muon from ECAL/HCAL information. (F) Thefractional part of this
word gives the combined probability using ECAL and HCAL. It is set to 0.5 if information from
neither is available. The integer part of the word is a statuscode, having the following possible
values:

: 0 Both ECAL and HCAL information used.

: 1 Only HCAL information used. ECAL had zero energy or potential overlaps.

: 2 Only ECAL information used. HCAL had low fiducial coverage orpotential overlaps.

: 3 Neither ECAL and HCAL information used.

5.5.2 Blocklet 104

The 104 blocklets store information about neutral “tracks”, i.e. calorimeter objects which have been
associated to a reconstructed vertex. In the phase2 output structure, the information for these tracks are
stored in TRK banks hanging from dummy vertices of type 11.

In the version of phase2 output from which this DST is derived, association of calorimeter objects is
only made to the primary vertex (although in a few cases one will find objects associated to end point
vertices of type 10). This situation should be contrasted with that for DST v7r1, where associations to
many different vertex types appeared.

• DchId The track reconstruction number (this is analogous to the number provided byDcTrackRec
in the drift chamber package for charged tracks). (I)

• IndxVxsB This word gives the index in the RVXS bank of the beginning vertex for this track. On
the DST, an “index” can be thought of as a row number, or line, in a table. If one considers the
RVXS bank to consist of a table where each row contains information on one reconstructed vertex,
then IndxVxsB tells the user which row to look at in order to find informationon the beginning
vertex for this track. (I)

42 Chapter 5. The Banks in More Detail

• IndxVxsE Index of end vertex in RVXS bank. See the previous discussionof IndxVxsB. For
neutral tracks as implemented in the present DSTs, this wordwill always be set to zero, since all
neutral tracks are constructed from calorimeter objects and so do not have an end point vertex in
the RVXS bank. (I)

• IndxStks Index of simulated track in STKS bank. This can only be non-zero for Monte Carlo
data. The TRK banks contain a reference link to the corresponding STRK bank containing the
simulated track, where a correspondence has been established. This word is filled by extracting
the ID of the simulated track from the appropriate STRK bank,and matching it with the entries in
the STKS bank. This word will not be filled inall cases. (I)

• Type Geant particle code for this track. This will be type 1, corresponding to a photon. (I)

• PxB The x component of the momentum at the beginning vertex. (F)

• PyB The y component of the momentum at the beginning vertex. (F)

• PzB The z component of the momentum at the beginning vertex. (F)

• EPxPxBVpx
= cov(px, px) at the beginning vertex. (F)

• EPxPyB cov(px, py) at the beginning vertex. (F)

• EPxPzBcov(px, pz) at the beginning vertex. (F)

• EPyPyBVpy
= cov(py, py) at the beginning vertex. (F)

• EPyPzBcov(py , pz) at the beginning vertex. (F)

• EPzPzBVpz
= cov(pz , pz) at the beginning vertex. (F)

The track length for a neutral track is not stored in the phase2 output, but is calculated for the DST
as follows. The position in space of the shower corresponding to the calorimeter object that this track
represents is extracted from the DMCA bank, and the modulus of the vector joining this space point to
the primary vertex is taken as the length of the track.

• Length Track length (cm). (F)

Note that the spatial position that is stored in the 404 blocklet that accompanies a 104 blocklet is the
position of the ECALclusterwhich has been used in forming this track, not the position oftheshower.
The latter is not stored on the present DSTs, and if required,must be calculated from the position of the
primary vertex, the direction of the track as given by the unit vector derived from the 3-momentum of
the track, and the track length.

5.5.3 Blocklet 201

The 201 blocklets store information for TRD tracks which have been matched to a drift chamber track.
The information is taken directly from the DMTR and DOTR banks, with the exception of the average
energy deposition per plane, for which case the energy associated with each hit is taken from the DATR
bank.

For more information on the words in this blocklet, the NOMADmemos 95-041 [6] and 96-005 [7]
could be consulted. Some of the description below is derivedfrom the phase 2 Web pages [5].

5.5. The MAS bank 43

• TrdId The TRD track identifier. (I)

• NHits The number of TRD planes hit for this track. (I)

• DoubPThe overlap flag. (I) The values taken are as follows:

: -1 Isolated track.

: -11 Single Id applied because double was not applicable.

: 0 Pion after 1 track and and 2 track Id.

: 1 Electron after 1 track changed to pion after 2 track Id.

: 10 Pion after 1 track changed to electron after 2 track Id.

: 11 Electron after 1 track and and 2 track Id.

• NOver The number of overlapping tracks. (I)

• NShit The number of shared hits for this track. (I)

• NIden The indecision flag. This is set to 1 if the result of 2d track identification was electron plus
pion and both havep > 2 GeV/c. In this case it is hard to take a decision. (I)

• Dist Mismatch parameter between TRD and DCH tracks. (F) This is taken from the DMTR bank,
where it is filled with the value returned by the functionDcTrdDistance (this is in trdmatch.c in
thematch subdirectory of the phase2 source).

• EAvg The average energy deposition per plane (in keV). The energyper hit is obtained from the
DATR bank. In cases where there has been an ADC overflow, the energy word in the DATR bank
has been set artificially to 99999 keV, and for the present calculation, a value of 100 keV is taken.
(F)

• ProbEl Probability to be an electron. (F)

• PionConThe pion contamination. If the algorithm was not applied, the value -1 will be found. (F)

• ElAcc The electron acceptance. (F)

• PionCtr The pion contamination (truncated). (F)

• ElAtr The electron acceptance (truncated). (F)

• ProtCon The proton contamination. (F)

• EHit1 The energy deposition in plane 1 (keV;EHit1 < 0 denotes a shared hit). (F)

• EHit2 The energy deposition in plane 2 (keV;EHit2 < 0 denotes a shared hit). (F)

• EHit3 The energy deposition in plane 3 (keV;EHit3 < 0 denotes a shared hit). (F)

• EHit4 The energy deposition in plane 4 (keV;EHit4 < 0 denotes a shared hit). (F)

• EHit5 The energy deposition in plane 5 (keV;EHit5 < 0 denotes a shared hit). (F)

• EHit6 The energy deposition in plane 6 (keV;EHit6 < 0 denotes a shared hit). (F)

44 Chapter 5. The Banks in More Detail

• EHit7 The energy deposition in plane 7 (keV;EHit7 < 0 denotes a shared hit). (F)

• EHit8 The energy deposition in plane 8 (keV;EHit8 < 0 denotes a shared hit). (F)

• EHit9 The energy deposition in plane 9 (keV;EHit9 < 0 denotes a shared hit). (F)

The wordsEHit1 throughEHit9 were introduced in DST v7r3, where they were always positivenum-
bers. In the DST v7r4, however, anegativenumber is used to flag a straw tube “hit” which is shared with
one or more other DCH-TRD matched tracks. To obtain the energy deposited, the absolute value should
be taken.

5.5.4 Blocklet 202

The 202 blocklets store information for TRD standalone tracks i.e. those tracks not matched to a drift
chamber track. The information is taken directly from the DOTR banks, with the exception of the average
energy deposition per plane, for which case the energy associated with each hit is taken from the DATR
bank.

• TrdId The TRD track identifier. (I)

• NHits The number of TRD planes hit for this track. (I)

• EAvg The average energy deposition per plane (in keV). The energyper hit is obtained from the
DATR bank. In cases where there has been an ADC overflow, the energy word in the DATR bank
has been set artificially to 99999 keV, and for the present calculation, a value of 100 keV is taken.
(F)

• B The track intercept parameter B (x = A × z + B). (F)

• A The track slope parameter A (x = A × z + B). (F)

5.5.5 Blocklet 301

The 301 blocklets store information for preshower clusterswhich have been matched to a drift chamber
track. All information is taken from the DMPS and DOPS banks,except for the z position of the cluster,
which is filled with the position of the first reference plane of the preshower, as given by the extrapolator
package.

• PrsIdX The identifier of the cluster in x. (I)

• PrsIdY The identifier of the cluster in y. (I)

• NTubX The number of tubes in the cluster in x. (I)

• NTubY The number of tubes in the cluster in y. (I)

• ClusTopoThe cluster topology/overlap word. (I) The following description of the possible values
comes from looking at the phase 2 routinePrsCheckOverlap.

: 0 Both projections are not overlapped.

: 1 The x projection is overlapped.

5.5. The MAS bank 45

: 2 The y projection is overlapped.

: 3 Both projections are overlapped.

: 4 The x projection is overlapped and the y projection is missing.

: 5 The y projection is overlapped and the x projection is missing.

: 6 One of the overlapped clusters is overlapped in the other projection.

• XClu The x position of the cluster. (F)

• YClu The y position of the cluster. (F)

• ZClu The z position of the cluster. (F)

• SigCluX The width of the cluster in x. (F)

• SigCluY The width of the cluster in y. (F)

• ECluH The energy of the cluster in the horizontal (y) tubes (MIPs).(F)

• ECluV The energy of the cluster in the vertical (x) tubes (MIPs). (F)

• ProbEl This word stores the probability to be an electron from preshower information. (F) The
information which follows on what values it can take comes from looking at the phase 2 function
PrsProbToBeEle.

: -5.0 If it occurs, indicates that supposed matching DC track could not be found.

: -1.0The track does not extrapolate to the preshower at all.

: -2.0 Extrapolation is available at the preshower, but the extrapolator “param” structure was
unavailable.

: -3.0 The extrapolator “param” structure was available, but the extrapolated momentum was
< 1.0 GeV/c.

: -4.0Passed the above cuts, but energy deposited in the preshowerwas< 0.01 (MIP?).

: 0.0The energy released was below a momentum-dependent threshold for electron identifica-
tion at the specified efficiency.

: 1.0The energy released is above the threshold, i.e. this particle is flagged as an electron.

• PionCon The pion contamination word. (F) The information which follows on what values it can
take comes from looking at the phase 2 functionPrsProbToBeEle.

: -1.0The track was not flagged as an electron (i.e. it hadProbEl 6= 1.0).

: > 0.0 Filled with the parametrised integral of thedN/dE spectrum for pions, from threshold
to infinity at the current momentum.

46 Chapter 5. The Banks in More Detail

5.5.6 Blocklet 304

The 304 blocklets store information for preshower clusterswhich have been matched to a calorimeter
cluster. All information is taken from the DMPS and DOPS banks, except for the z position of the cluster,
which is filled with the position of the first reference plane of the preshower, as given by the extrapolator
package.

• PrsIdX The identifier of the cluster in x. (I)

• PrsIdY The identifier of the cluster in y. (I)

• NTubX The number of tubes in the cluster in x. (I)

• NTubY The number of tubes in the cluster in y. (I)

• XClu The x position of the cluster. (F)

• YClu The y position of the cluster. (F)

• ZClu The z position of the cluster. (F)

• SigCluX The width of the cluster in x. (F)

• SigCluY The width of the cluster in y. (F)

• ECluH The energy of the cluster in the horizontal (y) tubes (MIPs).(F)

• ECluV The energy of the cluster in the vertical (x) tubes (MIPs). (F)

5.5.7 Blocklet 401

The 401 blocklets store information for calorimeter clusters which have been matched to a drift chamber
track. Information is taken directly from the DMCA and DOCA banks.

Note that in DST v7r1, it was possible to find 401 blocklets which appeared to be empty. This was
because all relevant entries in the match table (DMCA banks)were converted to 401 blocklets, whereas
in fact some DMCA banks were used only to record extrapolation information indicating that the track
in question had reached the calorimeter. At the DST level this information was recorded elsewhere (in
blocklet 1201) but the 401 was inadvertently raised in any case. This “feature” no longer appears in the
present DST, however it is still possible in a few cases to find401 blocklets with no measured energy
deposition in the calorimeter. In this case, these blocklets exist to indicate that energy ispredicted to be
deposited, and in fact the wordEDepMax will be found to be filled, giving the predicted upper bound
on this energy deposition.

For electron or positron candidates, note that the wordsShChiX, ShChiY andShChiBi contain “raw”
χ2 recalculated using the phase2 functionCalElectronRawChi2, rather than the “cluster”χ2 contained
in these words in version v7r2.

More information relating to these words may be found by consulting NOMAD memo 97-018 [8] or the
phase 2 Web pages [5].

• CalId The identifier of the calorimeter cluster. (I)

• NCells The number of cells in the cluster. (I)

5.5. The MAS bank 47

• TFlag Timing flag. (I) The information stored in this word is derived from the bitted calorimeter
status word (word 2) of the DOCA bank. The DST word contains six bits, with the following
meanings. Note that the bits are labelled from 0 to 31,not 1 to 32.

– Bit 0 All of the energy in the cluster is out of time.

– Bit 1 The cluster contains out of time energy.

– Bit 2 The TDC information isunavailable.

– Bit 3 Out of time flag from match with muon chambers at phase 2.

– Bit 4 Out of time flag from match with trigger scintillators at phase 2

– Bit 5 This cluster should be ignored.

– Bit 6 Was out of time, recovered for phase1 errors (TDC calibration problems) in the first
period of 1996. Essentially bits 0 and 1 get untagged.

It can be seen that a value of zero for theTFlag word indicates that all is OK. If it has a non-
zero value, then the individual bits will need to be looked atto learn more. Note that if the TDC
information is not available (bit 2 set) thenTFlag will have the value 4, provided bits 4 and 5 are
not set. In the previous releases of the DST package, settingof bits 3 and 4 was not possible as
the information was not provided at the phase2 level. In the present release, the information is
obtained through a DST preprocessing call to two muon library routines,MUEVENTOTH and
OTHCLUSTER .

• XClu The x position of the cluster. (F)

• YClu The y position of the cluster. (F)

• ZClu The z position of the cluster. (F)

• EClu The energy of the cluster. (F)

• Radx The radius of the cluster in x. (F)

• Rady The radius of the cluster in y. (F)

• EOverP E/(P −σP) whereE is the energy as measured in the calorimeter andP is the track mo-
mentum as given by the drift chambers. Selecting values for this word> 0.85 corresponds to the
standard phase2 electron identification cut. Note that in DST v7r1, this word was inappropriately
namedProbEl since that was what it is called in the phase2 documentation.It has been renamed
for this version in order to better reflect its meaning.

• EShoThe shower energy, corrected for the preshower. (F)

• ShChiX The shower profileχ2 in x (see above note). (F)

• ShChiY The shower profileχ2 in y (see above note). (F)

• ShChiBi The global shower profileχ2 (see above note). (F)

• EDepMin The minimum energy deposited in the calorimeter by this track. (F)

• EDepMax The maximum energy deposited in the calorimeter by this track. (F)

48 Chapter 5. The Banks in More Detail

• NormEP The normalized difference between the track momentum and the cluster energy(E −
p)/σ(E − p). (F)

• Overlap The fraction of energy not assigned to the track present in the cells used to build the
cluster, i.e.1. − EClu/Etot whereEtot is the total energy in the cells associated to track. (F)

5.5.8 Blocklet 404

The 404 blocklets store information for standalone calorimeter clusters. Information is taken directly
from the DMCA and DOCA banks.

• CalId The identifier of the calorimeter cluster. (I)

• NCells The number of cells in the cluster. (I)

• TFlag Timing flag. See the description of the corresponding word inthe 401 blocklet. (I)

• GammTypeThe gamma type. (I) The following description is taken from the Web pages for phase
2 [5].

: 1 Gamma shower obtained from a cluster with only one local maximum, andwith associated
preshower cluster.

: 2 Gamma shower obtained from a cluster with only one local maximum, andwithout asso-
ciated preshower cluster.

: 3 Gamma shower obtained from a cluster with two local maxima, and with associated
preshower cluster.

: 4 Gamma shower obtained from a cluster with two local maxima, and without associated
preshower cluster.

: 5 Gamma shower obtained from a cluster with three local maxima, and with associated
preshower cluster.

: 6 Gamma shower obtained from a cluster with three local maxima, andwithout associated
preshower cluster.

: ...

: 41 Overlap gamma.

: 42 Consistency gamma.

: 51 Neutral gamma.

Overlap gammas are built from neutral preshower clusters (with a signal greater than 2.5 mip).
They start as single cell clusters but other energy can be added from the hadron subtraction. Con-
sistency gammas are generated when the electron shower minimization fails.

• BremTrId The identifier of the track this photon is associated to, if itoccurs in the bremsstrahlung
list. (I) The bremsstrahlung algorithm here is the one internal tocalgamma.c.

• XClu The x position of the cluster. (F)

• YClu The y position of the cluster. (F)

5.5. The MAS bank 49

• ZClu The z position of the cluster. (F)

• EClu The energy of the cluster. (F)

• Radx The radius of the cluster in x. (F)

• Rady The radius of the cluster in y. (F)

• EShoThe shower energy, corrected for the preshower. (F)

• ShChiX The shower profileχ2 in x. (F)

• ShChiY The shower profileχ2 in y. (F)

• ShChiBi The global shower profileχ2. (F)

• EDepThe energy deposited in the calorimeter by this neutral.

• ESavedThe energy of the gamma without the bremsstrahlung algorithm applied. (F) The bremsstrahlung
algorithm here is the one internal tocalgamma.c.

• EDepMin The minimum energy deposited in the calorimeter by this neutral. (F)

• EDepMax The maximum energy deposited in the calorimeter by this neutral. (F)

5.5.9 Blocklet 501

Filling of the 501 blocklet is achieved by extracting information from the DMMU and DOMU banks.
The presence of a DMMU bank containing more information thanjust the muon veto blocklet is the
determining factor in whether a 501 blocklet is raised. Since selection of a “good” muon (theProbMu
word of the 101 blocklet having value 1.0) has tighter criteria than this, there are more 501 blocklets on
the DST than there are “good” muons.

The algorithm currently used to match up the information in the DMMU and DOMU banks when filling
the blocklet is the following. A loop is made through the DMMUbank, skipping muon veto blocklets,
selecting blocklets which correspond to TKU objects, tracks in space. For each selected object, a loop
is then performed over the objects in the DOMU bank to find the blocklet with the matching identifier.
Information is then extracted from the subblocklets (corresponding to TUPs, tracks in projection) for
this blocklet. A second loop over DMMU blocklets, without the requirement that the object be a track
in space, is performed to pick up those cases where only a single projection has been used in the match.
It should be noted that this procedure does not guarantee that the identical TUPs to those used in the
matching process are obtained when the match used tracks in projection from different modules, as may
be the case in the overlap region, for example. The algorithmmay be replaced by a better one in future
versions of the package.

• MuoIdS1 This is a packed integer word giving the identifiers of the TUPs corresponding to the x
and y tracks in projection in station 1. (I) If the TUP identifiers are ITUPX1 and ITUPY1, then
MuoIdS1 = 100000 × ITUPX1 + ITUPY1

• MuoIdS2 The same asMuoIdS1 only for station 2. (I)

• QualS1Decision of “old” phase 2 (χ2) on muon matching, station 1. (F)

50 Chapter 5. The Banks in More Detail

• QualS2Decision of “old” phase 2 (χ2) on muon matching, station 2. (F)

• Chi2S1Theχ2 in space for station 1 is filled in the following way. Theχ2/NDF for this station is
obtained from the DMMU bank following the selection criterion described above. The NDF is set
to 2 or 4 depending on whether one or both projections (TUPs) are present for the match. The two
quantities are multiplied together to give theχ2. On the DST the number of degrees of freedom
can be deduced from whether of not both identifiers are present in theMuoId word for the station.
(F)

• Chi2S2The same asChi2S1only for station 2. (F)

• XS1 The x position of the muon track in station 1. This and the following words are taken from
the relevant subblocklet of the DOMU bank. (F)

• YS1The y position of the muon track in station 1. (F)

• ZS1The z position of the muon track in station 1. (F)

• XS2The x position of the muon track in station 2. (F)

• YS2The y position of the muon track in station 2. (F)

• ZS2The z posiiton of the muon track in station 2. (F)

• SlXS1The slope in x of the muon track in station 1. (F)

• SlYS1The slope in y of the muon track in station 1. (F)

• SlXS2The slope in x of the muon track in station 2. (F)

• SlYS2The slope in y of the muon track in station 2. (F)

• MuonT0 This word is reserved for thet0 determined for this match. It is currently not available :
the word is filled with 0.0 (as in the phase2 bank). (F)

• MuPest Muon momentum estimate (from comparison of muon tracks in station 1 and 2). This is
filled by calling the muon code access routineMUMOMEST . (F)

5.5.10 Blocklet 505

The 505 blocklet contains information on standalone muon tracks. Specifically, the DOMU banks are
scanned, looking for TKU objects (tracks in space). Each TKUobject becomes an entry in the 505
blocklet, which is of variable length.

The first word in the blocklet gives the number of objects stored.

• NEnt The number of muon standalone tracks (TKU objects). (I)

For each of theNEnt tracks, the following is stored.

• TrkId The identifier of the muon track. This is a 4 digit number, withthe most significant digit
giving the module in which this track occurs (1 to 5). (Note that previous versions of this docu-
mentation erroneously indicated that it was the station that was given). (I)

5.5. The MAS bank 51

• X The x position of the muon track. (F)

• Y The y position of the muon track. (F)

• Z The z position of the muon track. (F)

• SlX The slope in x of the muon track. (F)

• SlY The slope in y of the muon track. (F)

• MuonT0 The t0 for the muon track. Note that this word is only non-zero for those tracks which
have been flagged as out of time. (F)

5.5.11 Blocklet 701

The 701 blocklets store information for hits in the veto scintillators which have been matched to a drift
chamber track.

• VetId Identifier of the VET object. (I)

• NHits The number of in-time hit counters. (I)

5.5.12 Blocklet 707

The 707 blocklets store information for in-time hits in the veto scintillators which have not been matched
to a drift chamber track.

• VetId Identifier of the VET object. (I)

• NHits The number of in-time hit counters. (I)

5.5.13 Blocklet 801

The 801 blocklets store information for matches of drift chamber tracks, extrapolated back to the front
calorimeter, with activity in FCAL.

• FcaId The identifier of the FCAL object. (I)

• XExt The x position of the extrapolated track at the FCAL. (F)

• YExt The y position of the extrapolated track at the FCAL. (F)

• SigXExt The errorσx on the x position of the extrapolated track at the FCAL. (F)

• SigYExt The errorσy on the y position of the extrapolated track at the FCAL. (F)

• TZero Thet0 of the track at the z position of the FCAL vertex. (F)

• Chi2 The associationχ2 for the match. (F)

52 Chapter 5. The Banks in More Detail

5.5.14 Blocklet 808

The 808 blocklet stores standalone information for the front calorimeter. The blocklet is variable in
length, and will appear at most once per event.

The fixed part of the blocklet contains the following information.

• FcaId The identifier of the FCAL object (0 for now). (I)

• NEnt The number of modules for which information is stored in thisblocklet. (I)

• VType Flags whether the vertex determination came from the drift chambers of FCAL. (I)

: 1 Drift chamber information.

: 8 FCAL information.

• XPri The x position of the primary vertex in the FCAL. (F)

• YPri The y position of the primary vertex in the FCAL. (F)

• ZPri The z position of the primary vertex in the FCAL. (F)

• MipToGeV The Mip to GeV value used for this event. (F)

For each of theNEnt modules contributing to this blocklet, the following information is stored.

• ModId The FCAL module identifier. (I)

• EDepThe energy deposited in the module. (F)

• X The x position in the module. (F)

• Y The y position in the module. (F)

• Z The z position in the module. (F)

• SigX The errorσx on the x position in the module. This word is not yet filled, andwill be found
to be identically -999.0. (F)

• TZMin The minimum possiblet0 for this module. (F)

• TZMax The maximum possiblet0 for this module. (F)

5.5.15 Blocklet 901

The 901 blocklets store information for HCAL clusters whichhave been matched to a drift chamber
track. All of the information is derived from the phase 2 DMHCand DOHC banks, which the exception
of the z position of the HCAL cluster, for which the z positionof the first HCAL reference plane as given
by the extrapolator package is stored, and the energy corrected for non-linear effects, as explained below.

• HcaId The identifier of the HCAL cluster. (I)

• XClu The x position of the HCAL cluster. (F)

5.5. The MAS bank 53

• YClu The y position of the HCAL cluster. (F)

• ZClu The z position of the HCAL cluster. (F)

• EClu The energy of HCAL cluster. (F)

• ECorr The energy deposited in ECAL and HCAL corrected for non-linearities. As the information
is not present in the current phase2 output, it has been obtained by calling a phase2 library routine
HCAL˙V7R2˙PATCH provided by P. Hurst. (F) See [9] for a discussion of the correction method.

5.5.16 Blocklet 904

The 904 blocklets store information for HCAL clusters whichhave been matched to a standalone calorime-
ter cluster. All of the information is derived from the phase2 DMHC and DOHC banks, which the
exception of the z position of the HCAL cluster, for which thez position of the first HCAL reference
plane as given by the extrapolator package is stored, and theenergy corrected for non-linear effects, as
explained below.

• HcaId The identifier of the HCAL cluster. (I)

• XClu The x position of the HCAL cluster. (F)

• YClu The y position of the HCAL cluster. (F)

• ZClu The z position of the HCAL cluster. (F)

• EClu The energy of HCAL cluster. (F)

• ECorr The energy deposited in ECAL and HCAL corrected for non-linearities. As the information
is not present in the current phase2 output, it has been obtained by calling a phase2 library routine
HCAL˙V7R2˙PATCH provided by P. Hurst. (F) See [9] for a discussion of the correction method.

5.5.17 Blocklet 909

The 909 blocklets store information for standalone HCAL clusters. All of the information is derived
from the phase 2 DMHC and DOHC banks, which the exception of the z position of the HCAL cluster,
for which the z position of the first HCAL reference plane as given by the extrapolator package is stored,
and the energy corrected for non-linear effects, as explained below.

• HcaId The identifier of the HCAL cluster. (I)

• XClu The x position of the HCAL cluster. (F)

• YClu The y position of the HCAL cluster. (F)

• ZClu The z position of the HCAL cluster. (F)

• EClu The energy of HCAL cluster. (F)

• ECorr The energy deposited in ECAL and HCAL corrected for non-linearities. As the information
is not present in the current phase2 output, it has been obtained by calling a phase2 library routine
HCAL˙V7R2˙PATCH provided by P. Hurst. (F) See [9] for a discussion of the correction method.

54 Chapter 5. The Banks in More Detail

5.5.18 Blocklet 1101

The 1101 blocklet stores information on calorimeter clusters associated with drift chamber tracks using
the alternative clustering algorithm of Gary Feldman. The information is derived from the DEHC bank
at phase 2.

Included in this blocklet is information obtained from the bremsstrahlung strip algorithm of Gary Feld-
man (as opposed to the Padova algorithm - see the 1301 blocklet). If NEnt is non-zero, this track has
been identified as having bremsstrahlunged, and the blocklet will contain a list of identifiers of objects
contributing to the bremsstrahlung strip. Thus this blocklet is in general of variable length.

• FelId The identifier of the cluster. (I)

• NCells The number of cells in the cluster. (I)

• Type The cluster type. (I) Valid cluster types are:

: 1 charged hadron.

: 4 electron.

: 5 muon.

• TrkId The identifier of the associated track (if this cluster has been included in the bremsstrahlung
strip). (I)

• NEnt The number of objects contributing to the bremsstrahlung strip. (I)

• NTrk The number of tracks contributing to the bremsstrahlung strip. By subtraction of this word
from NEnt the number of clusters contributing is obtained. (I)

• XClu The x position of the calorimeter cluster. (F)

• YClu The y position of the calorimeter cluster. (F)

• ZClu The z position of the calorimeter cluster. (F)

• EClu The energy of the calorimeter cluster. (F)

• Radx The radius of the calorimeter cluster in x. (F)

• Rady The radius of the calorimeter cluster in y. (F)

• BremB The bremsstrahlung strip energy. (F)

The variable part of the blocklet is a list of identifiers of objects forming the bremmstrahlung strip for
this track.

• ObjId The identifier of the object used in the bremsstrahlung stripsum. If charged (i.e. the first
NTrk objects) this is aDchId as stored in the 101 blocklets. If neutral (i.e. the rest of the entries
in the list) this is aFelId as stored in the 1111 blocklets. (I)

5.5. The MAS bank 55

5.5.19 Blocklet 1104

The 1104 blocklet stores information on neutral calorimeter clusters formed using the alternative cluster-
ing algorithm of Gary Feldman, which have been matched to standalone HCAL clusters. Note that these
HCAL clusters havein turn been matched within the standard matching engine frameworkto “standard”
neutral calorimeter clusters - if this were not the case these blocklets would be labelled 109. Thus, the
blocklet ID of 1104 does not constitute a direct match between calorimeter clusters from the two cluster-
ing algorithms, but rather an indirect match due to both clusters matching to the same standalone HCAL
cluster.

Note that situation here, like in DST version v7r3, isquite differentto that in DST version v7r2. In that
case, the 1104 blocklets represented standalone calorimeter clusters (i.e. not matched to a drift chamber
tracks). In this version such clusters are labelled 1111, which better reflects their origin. The change has
been necessitated by the introduction of matched between Feldman ECAL clusters and neutral HCAL
clusters.

• FelId The identifier of the calorimeter cluster. (I)

• NCells The number of cells in the cluster. (I)

• TrkId The identifier of the associated track (if this cluster has been included in the bremsstrahlung
strip). (I)

• XClu The x position of the calorimeter cluster. (F)

• YClu The y position of the calorimeter cluster. (F)

• ZClu The z position of the calorimeter cluster. (F)

• EClu The energy of the calorimeter cluster. (F)

• Radx The radius of the calorimeter cluster in x. (F)

• Rady The radius of the calorimeter cluster in y. (F)

5.5.20 Blocklet 1109

The 1109 blocklet stores information on neutral calorimeter clusters formed using the alternative clus-
tering algorithm of Gary Feldman, which have been matched tostandalone HCAL clusters.

• FelId The identifier of the calorimeter cluster. (I)

• NCells The number of cells in the cluster. (I)

• TrkId The identifier of the associated track (if this cluster has been included in the bremsstrahlung
strip). (I)

• XClu The x position of the calorimeter cluster. (F)

• YClu The y position of the calorimeter cluster. (F)

• ZClu The z position of the calorimeter cluster. (F)

56 Chapter 5. The Banks in More Detail

• EClu The energy of the calorimeter cluster. (F)

• Radx The radius of the calorimeter cluster in x. (F)

• Rady The radius of the calorimeter cluster in y. (F)

5.5.21 Blocklet 1111

The 1111 blocklet stores information on standalone calorimeter clusters formed using the alternative
clustering algorithm of Gary Feldman. The information is derived from the DEHC bank at phase 2.Note
that in previous DST versions, this blocklet had ID 1104. It has been changed to be more consistent, and
to fit in with new blocklets relating to HCAL matching to Gary Feldman calorimeter clusters.

Each cluster will be found in a separate 1111 blocklet. Note that a cut of 30 MeV on cluster energy has
been applied in selecting clusters for inclusion in the DST.One should also note that although such a cut
cluster will not appear on the DST, it may still appear in the list of identifiers for the bremsstrahlung strip
as stored in an 1101 blocklet, if it contributed to the strip.

• FelId The identifier of the calorimeter cluster. (I)

• NCells The number of cells in the cluster. (I)

• TrkId The identifier of the associated track (if this cluster has been included in the bremsstrahlung
strip). (I)

• XClu The x position of the calorimeter cluster. (F)

• YClu The y position of the calorimeter cluster. (F)

• ZClu The z position of the calorimeter cluster. (F)

• EClu The energy of the calorimeter cluster. (F)

• Radx The radius of the calorimeter cluster in x. (F)

• Rady The radius of the calorimeter cluster in y. (F)

5.5.22 Blocklet 1201

The 1201 blocklet stores extrapolator information for drift chamber tracks. The information is extracted
from the TXD banks, and is stored at a single reference plane (the first) for the preshower, calorimeter
and HCAL, and at two reference planes (one for each station) for the muon chambers. A blocklet is
present only if there is information for at least one of theseplanes. If the blocklet exists but a particular
reference plane was not reached, the words for that plane will be filled with zeros.

In the TXD banks, the momentum information is stored as1/p and the slopes of the track. To be
consistent with the storage of momenta elsewhere on the DST,this information has been converted to
(px, py, pz) using the routinetrack˙cartesian from the extrapolator package.

Note that at present, no errors on the extrapolated quantities are stored on the DST. The information
which is stored for each extrapolated track is the following.

• XPrs The x position at the PRS reference plane. (F)

5.5. The MAS bank 57

• YPrs The y position at the PRS reference plane. (F)

• ZPrs The z position at the PRS reference plane. (F)

• PxPrsThe x component of momentum at the PRS reference plane. (F)

• PyPrsThe y component of momentum at the PRS reference plane. (F)

• PzPrsThe z component of momentum at the PRS reference plane. (F)

• XCal The x position at the CAL reference plane. (F)

• YCal The y position at the CAL reference plane. (F)

• ZCal The z position at the CAL reference plane. (F)

• PxCal The x component of momentum at the CAL reference plane. (F)

• PyCal The y component of momentum at the CAL reference plane. (F)

• PzCalThe z component of momentum at the CAL reference plane. (F)

• XHca The x position at the HCA reference plane. (F)

• YHca The y position at the HCA reference plane. (F)

• ZHca The z position at the HCA reference plane. (F)

• PxHca The x component of momentum at the HCA reference plane. (F)

• PyHca The y component of momentum at the HCA reference plane. (F)

• PzHcaThe z component of momentum at the HCA reference plane. (F)

• XMuoS1 The x position of the extrapolated track at muon station 1. (F)

• YMuoS1 The y position of the extrapolated track at muon station 1. (F)

• ZMuoS1 The z position of the extrapolated track at muon station 1. (F)

• PxMuoS1The x of the extrapolated track at muon station 1. (F)

• PyMuoS1The y of the extrapolated track at muon station 1. (F)

• PzMuoS1The z of the extrapolated track at muon station 1. (F)

• XMuoS2 The x position of the extrapolated track at muon station 2. (F)

• YMuoS2 The y position of the extrapolated track at muon station 2. (F)

• ZMuoS2 The z position of the extrapolated track at muon station 2. (F)

• PxMuoS2The x of the extrapolated track at muon station 2. (F)

• PyMuoS2The y of the extrapolated track at muon station 2. (F)

58 Chapter 5. The Banks in More Detail

• PzMuoS2The z of the extrapolated track at muon station 2. (F)

There is one “feature” of the TXD banks (and hence the 1201 blocklet) which users should note. It
appears that in those cases where a track has been identified as an electron, the track (or rather the
“shower” resulting from the track) has been extrapolated asa neutral through to the muon chambers.
Thus, if the wordProbEl in the 201 blocklet has the value 1.0, the 1201 blocklet will be found to contain
non-zero extrapolation information for all subdetectors (even though the electron itself will not normally
get that far), and further, the 3-momentum of the extrapolated track will not change from subdetector to
subdetector (since the extrapolation was as a neutral). Duecaution should be exercised in interpreting
the contents of the blocklet in these cases.

5.5.23 Blocklet 1301

The 1301 blocklet stores information from the Padova bremsstrahlung strip algorithm. It is anexact
copy of the DMBR bank which is raised in phase 2 processing, and is variable in length since it contains
a list of cross-referencing information to the objects making up the bremsstrahlung strip. Note that this
version of the DMBR bank (and hence this blocklet) contains in addition to the list of bremsstrahlung
objects a list of information for calorimeter cells relevant to the strip.

The fixed part of the blocklet has the following format.

• NHead Header length in words. (I)

• Version Blocklet format version number. (I)

• NEnt The number of objects stored in blocklet. This includes boththe list of bremsstrahlung
objects and the cell list. (I)

• NBrem The number of bremsstrahlung objects stored in the blocklet. By subtractingNBrem from
NEnt the number of objects in the cell list is obtained. (I)

• EType The electron track type. (I) Valid values are:

: 0 Unknown.

: 1 Single track.

: 2 Broken track.

• EBremssThe total bremsstrahlung energy. (F)

• SEBremssThe error on the total bremsstrahlung energy. (F)

• EGammaThe total gamma energy. (F)

• EPrimary The primary nonet energy. (F)

• EPhoton The total photon energy. (F)

• EPrsX The total x signal for the preshower. (F)

• EPrsY The total y signal for the preshower. (F)

• X0PassThe amount ofX0 passed. (F)

5.5. The MAS bank 59

• LTrack The total charged track length (cm). (F)

• ELostTk Total track energy not accounted for in the list. This will befound to be identically 0.0
at the present time. (F)

• ELostCal Total calorimeter energy not accounted for in the list. Thiswill be found to be identically
0.0 at the present time. (F)

• EMC The generated energy (Monte Carlo). (F)

The variable part of the blocklet is in two parts, the bremsstrahlung list of cross-references, and the list
of cell information. The firstNBrem entries give the bremsstrahlung list.

• BitVal Bitted word containing bremsstrahlung list. (I)

– Bit 00 If set to 1, this drift chamber track is inside the bremsstrahlung list.

– Bit 01 If set to 1, this preshower cluster in x is inside the bremsstrahlung list.

– Bit 02 If set to 1, this preshower cluster in y is inside the bremsstrahlung list.

– Bits 03 - 10The identifier of the track/cluster. Note that if bits 00 to 02are all zero, the Id
will be that of a calorimeter cluster (the Calid word of a 401/404 blocklet). If bit 00 is set,
the Id will be that of a drift chamber track (the DchId word of a101 blocklet).

– Bits 11 - 20The fraction of the calorimeter cluster inside the bremsstrahlung list(×1000)

– Bits 21 - 25The bremsstrahlung shower track type.

∗ 1 Electron at primary

∗ 2 Electron that triggered the brem call

∗ 3 1 + 2 (electron at primary + triggering electron)

∗ 4 Electron tail

∗ 5 Gamma prong overlapping electron nonet

∗ 6 Gamma prong (ECAL nonet used)

∗ 7 Gamma prong (DC momentum used)

∗ 8 Asymmetric gamma overlapping electron nonet

∗ 9 Asymmetric gamma (ECAL nonet used)

∗ 10 Asymmetric gamma (DC momentum used)

∗ 11-15Not used

∗ 16 Middle track

∗ As before +16Tail of broken track

The lastNEnt − NBrem entries give the cell list.

• BitVal Bitted word containing cell list. (I)

– Bits 00 - 11The identifier of the cell(column × 100 + row).

– Bits 12 - 31The energy deposited in the cell (MeV).

60 Chapter 5. The Banks in More Detail

Note that a bug at the phase2 (v7r3c) level in filling of the cell list in the DMBR bank has caused the
information in the cell list (only) for the v7r2 DST to be incorrect. For the present release, the correct cell
list has been generated by calling at the DST preprocessor level a phase2 library routineCheckDMBR
provided by S. Lacaprara and M. Contalbrigo which regenerates the correct DMBR bank from phase2
information.
More information on the use of the Padova bremsstrahlung strip can be found by consulting the phase2
Web pages [5].

5.6 The LEPS bank

The LEPS bank summarises the generated interaction produced by NEGLIB. It is essentially a copy of
the information available in the LUJT and LEPT banks from thefull NOMAD ZEBRA structure. The
bank consists of a header part and a repeat part which is a table of generated particles. The header
contains the following information. All words exceptNPart andIdPar come from the LEPT bank.

• NPart This is the number of particles contained in the LUJET commonfor this event, as stored in
the LUJT bank. (I)

• IdPar The identifier of the parent particle to the neutrino (as determined by which of the NUBEAM
tables: pion, kaon, other was used) which decayed to producethe intercating neutrino. The code
stored is the GEANT particle code. The word is a copy of word 14of the SEVT bank. (I)

• Enu The incoming neutrino energy. (F)

• Xbj Bjorken x for the event. (F)

• Ybj Bjorken y for the event. (F)

• Wsq W 2 for the event. (F)

• QsqQ2 for the event. (F)

• Nu ν for the event. (F)

The repeat part of the bank contains the following information for each of theNPart particles in the
LUJET common.

• Type Particle type (10000*K(PART,1)+K(PART,3)). (I) K(PART,1) is the status (KS) code of
the present parton/particle, giving information on for example its state of decayedness. K(PART,3)
gives information on where to find the parent particle or jet that produced this particle. For more
details see reference [10], section 5.2.

• Code Particle code, (K(PART,2)). (I) This is the so-called parton/particle KF code adopted by
JETSET and the Particle Data Group. For the details, see reference [10], section 5.1.

• Px The x component of the particle momentum. (F)

• Py The y component of the particle momentum. (F)

• PzThe z component of the particle momentum. (F)

• E The energy of the particle. (F)

• MassThe mass of the particle. (F)

5.7. The SVXS bank 61

5.7 The SVXS bank

The SVXS bank is essentially a summary in tabular form of the information in the SVTX chain of banks.
A crude filtering of the vertices is performed in order to reduce the size of the bank. All end vertices
(vertices of type 10) are suppressed, as well as vertices whose z position lies beyond the reference plane
of HCAL as defined in the extrapolator package. End point vertices of muon tracks are retained in all
cases.

• NVert Indicates how many vertices are stored in the bank. (I)

For each vertex, the following words are stored.

• Id The vertex identifier. Since the simulated vertex structuredoes not define an explicit ID for the
individual vertices, this identifier is filled on the DST by recording the position of the correspond-
ing SVTX bank in the linear chain. (I)

• Type The vertex type. Valid types are in principle the same as given in the description of the RVXS
bank - note however that not all valid types appear to be used in the corresponding word in the
SVTX bank which is simply copied into the present word. (I)

• NChgd Counts all charged tracks associated to the vertex (by looping over the STRK structure
associated with the simulated vertex, checking on charge).(I)

• NNeut Counts all neutral tracks associated to the vertex (by looping over the STRK structure
associated with the simulated vertex, checking on charge).(I)

• X The x position of the vertex. (F)

• Y The y position of the vertex. (F)

• Z The z position of the vertex. (F)

5.8 The STKS bank

In a similar way to the SVXS bank, the STKS bank is a summary in tabular form of the information in
the STRK banks. A crude filtering is performed in order to reduce the size of the bank. All tracks with
both beginning and end point vertices beyond the preshower,or with momentum at the beginning vertex
less than 30 MeV are ignored. Muon tracks are always retained.

• NTrak Indicates how many tracks are stored in the bank. (I)

For each track, the following words are stored.

• Id The track identifier. Since the simulated track bank does notdefine an explicit ID for the
individual tracks, this identifier is filled on the DST by recording the position of the STRK bank
in the list obtained by looping over all tracks from each vertex in the SVTX/STRK structure. (I)

• LId The LEPTO identifier of the track. In practice this works out to be theindex, or row number,
of the track in the table given in the LEPS bank. It will be zerofor all tracks not in the LEPS bank
(i.e. not forming part of the particle list generated by LEPTO). In most places on the DST such a
word would be calledIndx.... rather thanId ; the fact that the identifier acts as an index in this case
is fortuitous. (I)

62 Chapter 5. The Banks in More Detail

• GId The Geant identifier of the track. This can in principle be cross-referenced with theId word
in the SCAS bank. Otherwise it is simply an index into the listof all simulated tracks in the event.
Since not all simulated tracks are stored on the DST, this is only of use when going back to the
event at the GENOM level or on the full RECON output. (I)

• IndxVtxB This word gives the index (i.e. the row in the table of all vertices) of the beginning
vertex of this track in the SVXS bank. It can therefore be useddirectly as the second argument to
any of the access functions returning individual words froma particular vertex in the SVXS bank.
Note that in the printout of the event given by thePrintDST() routine, both this index and the
actual ID of the vertex which has been indexed are printed. The latter is calledVIdB and is printed
in brackets, to indicate that it is not actually stored in thebank. Printing this is to aid those users
more likely think in terms of the ID of the vertex than in termsof its row position in a table. It is
important to understand the distinction when using this word. (I)

• IndxVtxE The same as the previous word only this time for the end vertex. Note that when the
end vertex has not been included in the SVXS bank, this word will be zero. (I)

• Charge The charge of the track. Since the charge is not stored in the STRK bank, it is deduced
from the GEANT code described next. (I)

• Type The GEANT code of the track.Important Note: In general the code stored in the STRK
bank from which this word is taken follows the GEANT scheme for numbering particles. In the
case of tau leptons, NOMAD has adopted the policy of creatinga short track and secondary vertex
for the tau, and the code stored here will found to be 100 (τ−) or 101 (τ+). In the case of some
charmed particles, for which a short track and secondary vertex is also created, there is no GEANT
code, and yet no NOMAD specific numbering convention has beendefined. In these cases, what
will be found in this word is actually the Particle Data Group(used by LEPTO, JETSET) code.
This mixing of conventions can be confusing unless the user is aware of it. (I)

• PxB The x component of the track momentum at the beginning vertex. (F)

• PyB The y component of the track momentum at the beginning vertex. (F)

• PzB The z component of the track momentum at the beginning vertex. (F)

• PxF The x component of the track momentum at the first hit (will be 0.0 for neutral tracks). (F)

• PyF The y component of the track momentum at the first hit (will be 0.0 for neutral tracks). (F)

• PzF The z component of the track momentum at the first hit (will be 0.0 for neutral tracks). (F)

• PxL The x component of the track momentum at the last hit (will be 0.0 for neutral tracks). (F)

• PyL The y component of the track momentum at the last hit (will be 0.0 for neutral tracks). (F)

• PzL The z component of the track momentum at the last hit (will be 0.0 for neutral tracks). (F)

• PxE The x component of the track momentum at the end vertex (will be 0.0 if the end vertex is not
included in the SVXS bank). (F)

• PyE The y component of the track momentum at the end vertex (will be 0.0 if the end vertex is not
included in the SVXS bank). (F)

5.9. The SCAS bank 63

• PzEThe z component of the track momentum at the end vertex (will be 0.0 if the end vertex is not
included in the SVXS bank). (F)

• XF The x position of the first hit on the track (will be 0.0 for neutral tracks). (F)

• YF The y position of the first hit on the track (will be 0.0 for neutral tracks). (F)

• ZF The z position of the first hit on the track (will be 0.0 for neutral tracks). (F)

• XL The x position of the last hit on the track (will be 0.0 for neutral tracks). (F)

• YL The y position of the last hit on the track (will be 0.0 for neutral tracks). (F)

• ZL The z position of the last hit on the track (will be 0.0 for neutral tracks). (F)

• Length The track length (in cm). Note an important change from DST version v7r2. In v7r2,
since the STKS bank was filled from the C structures into whichthe SVTX/STRK banks were
unpacked by thedc package, and no function to return the track length was available, a length was
calculated (in the DST code) using the position of the beginning and end vertices. In some cases
(especially for long charged tracks with segments outside of the magnetic field, such as muons)
the algorithm used was too crude to give a reasonable result,and so the DST value could differ
substantially from that stored in the STRK bank. In the present DST version, the length stored is
that takendirectly from the STRK bank. (F)

The STKS bank is the only instance in the current DST library where the information used to fill the
bank does not comeentirely from the corresponding ZEBRA bank in the phase2 output structure. Since
(a) some of the information stored in the STKS bank is not stored in the STRK bank itself, (b) the
simulated vertices and tracks are unpacked during the running of RECON into C structures and then left
unmanipulated, and (c) the utilities to access the C structures are more convenient than attempting to
obtain the information directly from the ZEBRA banks in thiscase, the C structures have been accessed
to obtain the extra information in filling the banks, specifically theVxtrkList chained list of structures
is used. (Note that in DST v7r2, the C structures were used forall the information).

5.9 The SCAS bank

The SCAS bank gives a list of the simulated calorimeter information for a Monte Carlo event, at the level
of energy deposition in individual lead glass blocks. The contents are taken without further selection from
the RCAL bank produced by GENOM.

• NCells Indicates how many “cell hits” there are stored in the bank. If several tracks deposited
energy in a given lead glass cell, there will be several entries for that cell contributing toNCells
i.e. the word does not count the number of cells containing deposited energy. (I)

For each cell hit, the following words are stored.

• Id The identifier stored here is that assigned to the simulated track depositing the energy by the dc
package, and returned by the functionDcTrackGeant(˙DcTrack dctrack). It can in principle be
cross-referenced with theGId word in the STKS bank. (I)

64 Chapter 5. The Banks in More Detail

• LId The LEPTO identifier stored here is the identifier assigned tothe simulated track depositing
the energy by the dc package, and returned by the functionDcTrackLepto(˙DcTrack dctrack) .
In practice this works out to be theindex, or row number, of the track in the table given in the
LEPS bank. It will be zero for all tracks not in the LEPS bank (i.e. not forming part of the particle
list generated by LEPTO). In most places on the DST such a wordwould be calledIndx.... rather
thanId ; the fact that the identifier acts as an index in this case is fortuitous. (I)

• Type The GEANT code of the track depositing the energy. (I)

• BlockId Calorimeter block identifier. (I) (100 × Column + Row)

• E The energy deposited for this hit. (F)

• EC The energy deposited (Čerenkov weighted) for this hit. (F)

• XAv The average x position (relative to cell centre). (F)

• YAv The average y position (relative to cell centre). (F)

• ZAv The average z position (relative to cell centre). (F)

Note that in the above description, thex, y andz information stored for a hit isrelative to the centre of
the cell, that is, it is not an absolute position in the NOMAD coordinate system but rather an offset with
respect to the cell centre. This simply reflects the way the information is stored in the RCAL bank.

Chapter 6: Code

In this chapter a brief description of the source code organisation of the DST package is given, to aid
anyone needing to develop or understand the code in some detail. Those readers not requiring such
detailed knowledge can safely skip this chapter.

The package has been placed under CVS on the NOMAD offline cluster, and can be accessed using the
standard “cvs checkout dst”. The directory structure underthedst directory is organised into aninclude
subdirectory containing .h and .inc files, and asrc subdirectory in which the majority of the code is
placed. The subdirectory denotedphase2contains some routines which are used to fill information
which cannot be obtained directly from the phase2 output ZEBRA structure, since phase2 has not been
repassed. These routines should rightly reside in libraries which create the phase2 output structure, in
subsequent phase2 and other library versions. Documentation files are stored in the subdirectorydoc.
Subdirectoryscripts contains awk and Bourne shell scripts related to automatic generation of DST code.
Finally, subdirectoryhistoscontains some code to enable histogramming of the individual words stored
on the DST.

The source code is a mixture of FORTRAN and C. The filling of theDST ZEBRA banks from the phase2
banks is realised in FORTRAN. C is used for the majority of theaccess routines, utilising the C structures
onto which the ZEBRA banks are mapped.

6.1 Include files

The following include files are relevant to the DST package.

• dstcom.incThis FORTRAN include file is used internally by the DST package, when creating the
bank structure. It in turn includes the filedstparams.incdescribed next.

• dstparams.incThis FORTRAN include file holds a set of parameters defining the bank structure
of the DST. It defines the DST version, and defines a set of parameters specifying the number of
words in each bank. All routines involved with raising the banks work from these parameters, and
they may also be useful for FORTRAN direct ZEBRA bank navigators. This file is automatically
generated from the bankdoc using the awk scriptdstparams.awk.

• dstlink.inc A further FORTRAN include file which contains the common for the temporary link
area used for storing links during raising of banks.

• dststats.incContains a common block used to store statistics on the size of the DST (these statistics
are compiled by routineDSTSIZE, called byCreateDST()), in order to provide a summary which
is printed byDSTEND.

• dstaccess.incThe common allowing access by name for FORTRAN high-level access. See the
documentation for Fergus Wilson’s access package [2] for more details.

• dstgen.incThis include file contains a declaration of the type (INTEGERor REAL) of all automat-
ically generated single word access functions. It may be of use to those FORTRAN programmers
who use such access functions, in that inclusion of this file in the source code will cover the decla-
ration of any functions used. Two points should be noted, however:

– The include filepointer.inc must be included along with this include file, to make available
the POINTER type which is used to declare the navigation routines.

65

66 Chapter 6. Code

– The use ofdstgen.incwill cause many compiler warning messages (one for each function
not used) if the code is compiled in the standard way. These warnings indicate that a function
or variable has been declared but not used. There are ways to avoid these warning messages
– for example on the alphas thef77 compiler option-warn nouncalled could be used. This
will of course have the side effect of suppressing the ability to spot such warnings for other
parts of the code.

– Finally, a number of auxilliary include files internal to thefunctioning of DST Fortran code
used for extracting information from the phase2 ZEBRA structure are listed here for com-
pleteness.comtrdhl.inc, dstdmca.inc, dstdmfc.inc, dstdmhc.inc, dstdmmu.inc, dstdmps.inc
dstdmtr.inc, dstdmve.inc, dstfcamods.inc, dstfelbremobj.inc, dstmutrk.inc , dstmuveto.inc,
dsttxd.inc

• muends.incList of pointers to muon end vertices in SVTX bank.

• dstbanks.hContains the definition of C structures which map to the ZEBRADST banks. This file
is automatically generated from the bankdoc using the awk script dstbanks.awk.

• dstgen.hContains prototypes for the C access routines to the DST banks. This file is automatically
generated from the bankdoc using the awk scriptdstgen.awk.

• dstlepto.hPrototypes utility function for use with the LEPTO information.

• dstcfortran.h Dummied. This redundant include file contained in previous library versions the
cfortran interface for calling of DST FORTRAN routines fromC code. In the present version
these calls have been stored with the routines themselves.

• utilfilldst.h Prototypes for some utility C routines used internally by the package for filling of the
DST banks. In a sense, these routines are private, which means that they may change without
warning between releases of the code. Users may use these routines if they so wish, of course, but
should be prepared for surprises.

• utilaccessdst.hPrototypes for some utility C routines used publicly for accessing the DST.

6.2 The Source Code

The structure of the DST package will be briefly described in this section. The source code will be found
in the subdirectorysrc. All FORTRAN routines in the package will be found in their own separate.F
file, with the basename being the routine name in lowercase. For example, the routineDSTEND will be
found in the filedstend.F. C functions are generally collected together into appropriate .c files, and the
name of the file containing a given function will be indicatedwhen the function is described.

6.2.1 Creation of the DST structure

Creation of a DST structure involves calling of the FORTRAN routineCreateDST, which may be found
in the filesrc/createdst.F. As indicated above, generally any FORTRAN routine referred to below will
be found in its own.F file in this directory.

CreateDST is essentially a loop over all of the different banks comprising the DST structure, booking
and filling. Specifically, the following FORTRAN routines are called:

6.2. The Source Code 67

→ DSTINI to perform package initialization.

→ DstPreProcess to obtain any necessary information which isnot present in the phase2 ZEBRA
structure, due to the fact that phase2 is not repassed to create v7r4 DSTs.

→ CRDST to create the DST bank.

→ CREVS to create the EVS bank.

→ CRRVXS to create the RVXS bank.

→ CRLEPS to create the LEPS bank.

→ CRSVXS to create the SVXS bank.

→ CRSTKS to create the STKS bank.

→ CRSCAS to create the SCAS bank.

→ CRMAS to create the chain of MAS banks.

→ FILLEVS to fill the EVS bank.

→ DSTSIZE to compile statistics on bank sizes.

The preprocessor routine,DstPreProcess, calls the following routines:

→ CHECKDMBR (from phase2 library) to correct the cell list in the DMBR bank.

→ OBJ2MUO, MUCD, MUMA and DIMU (from the muon library), to get the decisions on muon
matching of the “old” phase2, in order to fill the wordsQualS1andQualS2of the 501 blocklet.

→ MUEVENTOTH (from muon library) and OTHCLUSTER to flag the out-of-time ECAL neutral
clusters using trigger scintillator and muon chamber information.

→ DstFlagMuHits to do the flagging of muon hits associated to identified muons.

→ DstFormTrdHL to form sorted lists of TRD “hits” fitted to DCH-TRD matched tracks: the number
of tracks using each hit is also recorded. This information is used to flag “shared hits” in the MAS
201 blocklet(q.v.).

Of the routines to create the individual banks,CRRVXS, CRLEPS, CRSVXS, CRSTKSandCRSCAS
all work in the same manner. TakingCRRVXS as an example, it calls the following:

→ RVXSBKD to work out the bank descriptor.

→ MZIOBK/MZLIFT to raise the bank.

→ FILLRVXS to fill the bank.

68 Chapter 6. Code

The naming conventionxxxxBKD , FILLxxxx is preserved for the other banks.

CRDST does the booking and filling of the (trivial) DST bank in one routine.CREVS books and raises
the EVS bank, but filling is accomplished byFILLEVS after all of the other banks have been raised,
since information in those banks is used.

The creation of the chain of MAS banks is more involved than the creation of the other banks. It is
handled by the routineCRMAS, which is essentially a loop over the VTX/TRK structure, checking the
MO bank which hangs from every TRK bank for output information from the matching engine.

For each match object, a status word is constructed which flags which subdetectors have contributed in-
formation to the match. One subdetector is deemed to be the “seed” subdetector; the one which is driving
the matching (this would be the drift chambers for a charged reconstructed track, the calorimeter for an
isolated calorimeter cluster, and so on). In addition, the presence of information relating to the alterna-
tive clustering of Gary Feldman, of extrapolator information, or of Padova bremsstrahlung information
is tested for, and the status word appropriately adjusted. Once the status word is complete, the routine
BKMAS is called which performs the task of construction of the bankdescriptor (callsMASBKD),
raising of the MAS bank (callsMZIOBK andMZLIFT) and its filling (callsFILLMAS).

When filling a MAS bank, which is made up of a collection of blocklets, theFILLMAS routine calls
specialised routines for each particular type of MAS blocklet. These specialised routines are named using
a logical naming schemeFILLxxxyyy , wherexxx refers to the subdetector providing the information,
andyyy refers to the seed subdetector. For example, the MAS blocklet of type 401 is filled by the routine
FILLCALDCH , which may be found in the filesrc/fillcaldch.F.

Auxilliary routines used by the routines mentioned above will be described in section 6.2.3 below. Two
additional FORTRAN routines which are used to set the print and debug levels of the DST package are

• dstSETPRFLAG for the print level.

• dstSETDBFLAG for the debug level.

It is these routines which are called by RECON to set the appropriate print levels based on the values
given for the datacardDSTF.

6.2.2 Printing of the DST structure

Printing of the DST structure is accomplished by the FORTRANroutinePrintDST . This in turn calls
specialised routines for each bank, as follows:

→ PrintEVS to print the contents of the EVS bank.

→ PrintRVXS to print the contents of the RVXS bank.

→ PrintMAS to print the chain of MAS banks.

→ PrintLEPS to print the contents of the LEPS bank.

→ PrintSVXS to print the contents of the SVXS bank.

→ PrintSTKS to print the contents of the STKS bank.

→ PrintSCAS to print the contents of the SCAS bank.

6.2. The Source Code 69

As in the case of theFILLMAS routine, thePrintMAS routine calls specialised routines for each par-
ticular type of MAS blocklet. These specialised routines are named using a logical naming scheme
Printxxxyyy , wherexxx refers to the subdetector providing the information, andyyy refers to the seed
subdetector.

6.2.3 Auxilliary routines for filling of the DST structure

A number of auxilliary routines are invoked by the routines already described when creating the DST
structure. A brief description of these will now be given.

Bank navigation in FORTRAN is aided through a set of integer functions with the generic namexxxxREF(),
wherexxxx is the name of a bank in the DST structure (except for the MAS bank). These functions find
the ZEBRA link to the relevant bank and check that the character name of the bank is correct. A few
similar functions to find links to certain other banks in the NOMAD ZEBRA structure are also available.
These areDBHCREF(), DEHCREF(), DOHCREF(), LEPTREF() and LUJTREF() . One further
function,DstLinkFromRef(ADR) , converts a pointer to a bank in the DST structure to its ZEBRAlink.

The following FORTRAN routines are used when filling the EVS bank.

• SUBROUTINE DstGetDensity(NDCVETO, NDCHIT, NDENSITY, NTR DHIT) Extract in-
formation relating to density cuts from the BDCH bank.

• REAL*8 FUNCTION EnergyCalCells() Return the total energy deposited in calorimeter cells.
The information is taken from the DACA bank.

• REAL*8 FUNCTION EnergyHcaSlabs() Return the total energy deposited in the hadron calorime-
ter. The information is taken from the DAHC bank.

• INTEGER FUNCTION NumCalCells() Return the number of calorimeter cells in the event with
energy above threshold. The DACA bank is accessed.

• INTEGER FUNCTION NumDchHitsLeft() Return the number of drift chamber hits which have
not been used in the track building. The DDCH bank is accessed.

• INTEGER FUNCTION NumHang() Return the number of hangers (tracks with beginning vertex
type 9) in the event. The VTX structure is looped over.

• INTEGER FUNCTION NumHcaSlabs() Return the number of hadron calorimeter slabs in the
event which have been hit. The DAHC bank is accessed.

• INTEGER FUNCTION NumMuMatch() Return the number of “good” muons in the event. The
MAS banks are looped over, and for those containing a 501 blocklet, theProbMu word in the
corresponding 101 blocklet is checked. If it is set to 1.0, the track is counted as a “good” muon.

• INTEGER FUNCTION NumPrimChgTracks() Return the number of charged tracks attached
to the primary vertex. The MAS banks are looped over.

• INTEGER FUNCTION NumPrimNeuTracks() Return the number of neutral tracks attached to
the primary vertex. The MAS banks are looped over.

• INTEGER FUNCTION NumTrigHits(IPLANE) Return the number of in-time trigger scintilla-
tor hits in the event. The DASC bank is accessed.

70 Chapter 6. Code

• INTEGER FUNCTION NumUnassCalClus() Return the number of unassociated calorimeter
clusters in the event. Ths MAS banks are looped over to determine this.

• INTEGER FUNCTION NumUnassHcaClus()Return the number of unassociated hadron calorime-
ter clusters in the event. Ths MAS banks are looped over to determine this.

• INTEGER FUNCTION NumVERT() Return the number of vertices in the event which are pri-
mary or which are secondary but have more than one emergent track (charged or neutral). The
VTX structure is looped over.

• INTEGER FUNCTION NumVetoHits() Return the number of in-time veto scintillator hits in
the event. The MAS banks are looped over to determine this.

The following auxilliary routines are used in filling the RVXS bank.

• INTEGER FUNCTION NumAssChgTracks(LVTX) Return the number of outgoing charged
tracks associated to a given vertex. The VTX/TRK structure is accessed.

• INTEGER FUNCTION NumAssNeuTracks(LVTX) Return the number of outgoing neutral
tracks associated to a given vertex. The VTX/TRK structure is accessed.

• INTEGER FUNCTION NumRVXS() Return the number of reconstructed vertices in the event.
The VTX chain of banks is accessed for this task. Note that endpoint vertices (type 10) and
various dummy vertices (types 11, 0, or -1) are not counted.

In filling the blocklets in the MAS banks, theFILLxxxyyy routines make use of a number of utility
routines which extract information from the phase 2 ZEBRA banks. The routines which have a name
of the formDstGet... generally return a real array of information. TheNum... routines are generally
integer functions. All routines are FORTRAN. The full list is as follows:

• INTEGER FUNCTION ChkFelBremObj(IDOBJ, IFLAG) Check whether a specified object
is associated to any Gary Feldman bremsstrahlung strip in the event. The ID of the track which
initiated the strip is returned if an association is found.

• INTEGER FUNCTION DstCalTFlag(ISTAT) Extract calorimeter timing information from the
status word of the DOCA bank.

• SUBROUTINE DstGetBestMu(LDMMU, LDOMU, IDMOFF1, IDMOFF2, IDOOFFX1, IDOOFFY1,
IDOOFFX2, IDOOFFY2) Auxilliary routine toDstGetDMMU to obtain pointers to the relevant
TKU and TUP entries in the DMMU and DOMU banks for a given matched muon.

• SUBROUITNE DstGetDcVeto(LTRK, NDCVHITSB, NDCVHITSF) Obtain information on
hits in the drift chamber veto plane around forward and backward extrapolations of a track.

• SUBROUTINE DstGetDMBR(LTRK, VECT, LDMBR) Extract information from the DMBR
bank.

• SUBROUTINE DstGetDMCA(LTRK, VECT) Extract information from the
DMCA/DOCA banks.

6.2. The Source Code 71

• SUBROUTINE DstGetDMFC(LTRK, VECT) Extract information from the
DMFC/DOFC banks.

• SUBROUTINE DstGetDMHC(LTRK, VECT) Extract information from the
DMHC/DOHC banks.

• SUBROUTINE DstGetDMMU(LTRK, VECT) Extract information from the
DMMU/DOMU banks.

• SUBROUTINE DstGetDMPS(LTRK, VECT) Extract information from the
DMPS/DOPS banks.

• SUBROUTINE DstGetDMTR(LTRK, VECT) Extract information from the
DMTR/DOTR/DATR banks.

• SUBROUTINE DstGetDMVE(LTRK, VECT) Extract information from the
DMVE bank.

• SUBROUTINE DstGetFcaMods(NMOD, FCAMOD) Extract information on a given FCAL
module from the FCCL bank.

• SUBROUTINE DstGetFelBremObj(ITRAK, NOBJ, NTRK, ESTRIP, F ELOBJ) Extract the
list of identifiers of objects forming the Gary Feldman bremsstrahlung strip from the DBHC bank.

• SUBROUTINE DstGetMuExtrap(LTRK, VECT) Extract extrapolator information at the muon
stations from the TXD banks (not used - seeDstGetTXD instead).

• SUBROUTINE DstGetMuTrk(NTKU, MUOTKU) Extract information on muon standalone
tracks (TKUs) from the DOMU bank.

• SUBROUTINE DstGetMuVeto(LTRK, VECT) Extract information from the muon veto block-
let in the DMMU bank.

• SUBROUTINE DstGetTXD(LTRK, IDET, IPLANE, VECT, ISTAT) Extract extrapolator in-
formation from the TXD banks.

• SUBROUTINE DstMuGap(LTRK, PROBGAP) Return the probability that a given track has
passed through the gap in station 1 of the muon chambers. Thisroutine uses the TXD bank
information and the muon library routineGetProbToHitMuGap .

• INTEGER FUNCTION FelClusCharged(ITRAK) Check whether there is a Gary Feldman
calorimeter cluster associated with a given track. The DEHCbank is accessed.

• SUBROUTINE FelMASNeutrals Raise MAS banks for each of the unassociated Gary Feldman
neutral calorimeter clusters. The DEHC bank is accessed.

• INTEGER FUNCTION IndexInRVXS(ID) Return the index (or “row number”) in the RVXS
bank of a vertex with a given identifier. Used to fill the 101 and104 blocklet wordsIndxVxsB and
IndxVxsE.

• INTEGER FUNCTION IndexInSTKS(ID) Return the index (or “row number”) in the STKS
bank of a simulated track with a given identifier. Used to fill the 101 and 104 blocklet word
IndxStks.

72 Chapter 6. Code

• INTEGER FUNCTION NumFcaMods() Return the number of front calorimeter modules with
energy deposition in them for this event. The FCCL bank is accessed.

• INTEGER FUNCTION NumFelBremObj(ITRAK) Return the number of objects which con-
tribute to the Gary Feldman bremsstrahlung strip. The DBHC bank is accessed.

• INTEGER FUNCTION NumMuTrk() Return the number of standalone muon tracks (TKU ob-
jects) in the present event. The DOMU bank is accessed.

• INTEGER FUNCTION NumPadBrem() Return the number of Padova bremsstrahlung objects
associated to the present track. The DMBR bank is accessed. Note that the number returned is the
number of actual bremsstrahlung objectsplus the number of objects in the cell list, both of which
are stored in the present implementation of the DMBR bank.

• SUBROUTINE ZTRACK˙CARTESIAN(ST, SET, SP, SEP) An interface to the extrapolator
package routinetrack˙cartesian. It is necessary because the extrapolator works in double preci-
sion and the ZEBRA structures contain single precision words. It is used when converting from
momenta stored as (1/p, tx, ty) to (px, py, pz).

The following auxilliary routine is used in filling the LEPS bank.

• INTEGER FUNCTION NumLEPS() Return the number of simulated particles LEPTO has pro-
duced for the event. This is obtained from the LUJT bank.

The following auxilliary routines are used in filling the SVXS bank.

• SUBROUTINE MuEndInit Called by CRSVXS it loops over the full SVTX/STRK structure to
find muon end vertices and stores their pointers into a commonblock (MUENDS).

• LOGICAL FUNCTION MuEndVtx(LSVTX) Used by FilterSVTX to check if a vertex is a
muon end vertex.

• INTEGER FUNCTION FilterSVTX() Flag whether a given simulated vertex should be included
in the SVXS bank. The selection is presently rather crude - the vertex type should not be end
point (type 10) and the z position of the vertex should not be beyond the front face of the hadron
calorimeter. If a type 10 vertex is the end point of a muon track, it is retained. Note that this
function uses the SVTX/STRK structure directly, and replaces the C functionSelectSVXof v7r2.

• int NumChargedTracks(˙DcVertex vertex) Return the number of simulated charged tracks pro-
duced at a simulated vertex. The CVxtrack list of structures, into which the GENOM output
data has been unpacked upon input of an event, is accessed to perform this task. Note that this
function is not used in the present version of the DST package. Instead the Fortran functionNum-
ChgdSecSVTXis used, which accesses the SVTX/STRK structure directly. (in utilfilldst.c).

• int NumNeutralTracks(˙DcVertex vertex) Return the number of simulated neutral tracks pro-
duced at a simulated vertex. The CVxtrack list of structures, into which the GENOM output data
has been unpacked upon input of an event, is accessed to perform this task. Note that this function
is not used in the present version of the DST package. Insteadthe Fortran functionNumNeut-
SecSVTXis used, which accesses the SVTX/STRK structure directly. (in utilfilldst.c)

6.2. The Source Code 73

• INTEGER FUNCTION NumChgdSecSVTX() Return the number of simulated charged tracks
produced at a simulated vertex. The SVTX/STRK structure is accessed.

• INTEGER FUNCTION NumNeutSecSVTX() Return the number of simulated neutral tracks
produced at a simulated vertex. The SVTX/STRK structure is accessed.

• INTEGER FUNCTION NumSVXS() Return the number of simulated vertices in the event. The
selection functionFilterSVTX is applied to a track before it is counted. The SVTX/STRK struc-
ture is accessed to perform this task.

The following auxilliary routines are used in filling the STKS bank.

• int dstkfcharge3(int kf) Given a particle number (KF code) as specified in the ParticleData Group
scheme (used by LEPTO and JETSET), returns the charge of the particle. Thanks to Bruce Yabsley
for providing the original function. (indstlepto.c)

• INTEGER FUNCTION DstSTRKCharge(ITYPE) Return the charge of a track given its Monte
Carlo type as stored in the STRK bank. This function uses the Cfunctiondstkfcharge3described
above.

• void DstTrackGetPBeg(˙DcTrack dctrack, double p[3])Return the 3-momentum at the begin-
ning vertex of a simulated track. Note that this function is not used in the present version of the
DST package. (inutilfilldst.c)

• void DstTrackGetPFirstHit(˙DcTrack dctrack, double p[3]) Return the 3-momentum at the first
hit on a simulated track. (inutilfilldst.c)

• void DstTrackGetPLastHit(˙DcTrack dctrack, double p[3]) Return the 3-momentum at the last
hit on a simulated track. (inutilfilldst.c)

• void DstTrackGetPEnd(˙DcTrack dctrack, double p[3]) Return the 3-momentum at the end
vertex of a simulated track. Note that this function is not used in the present version of the DST
package. (inutilfilldst.c)

• void DstTrackGetVFirstHit(˙DcTrack dctrack, double p[3]) Return the vertex position of the
first hit on a simulated track. (inutilfilldst.c)

• void DstTrackGetVLastHit(˙DcTrack dctrack, double p[3]) Return the vertex position of the
last hit on a simulated track. (inutilfilldst.c)

• INTEGER FUNCTION FilterSTRK() Flag whether a given simulated track should be included
in the STKS bank. The selection is presently rather crude - the z position of the beginning and
end vertices of the track should not be beyond the preshower,and the track momentum should be
greater than 30 MeV. If thetrack is a muon, it is retained regardless of the above criteria. Note that
this function uses the SVTX/STRK structure directly, and replaces the C functionSelectSTKof
v7r2.

• INTEGER FUNCTION IndexInSVXS(ID) Return the index (or “row number”) in the SVXS
bank of a simulated vertex with a given identifier. Used to fillthe wordsIndxVtxB andIndxVtxE .

74 Chapter 6. Code

• INTEGER FUNCTION NumSTKS() Return the number of simulated tracks in the event. The
selection functionFilterSTRK is applied to a track before it is counted. The SVTX/STRK struc-
ture is accessed to perform this task.

• INTEGER FUNCTION STRKPointerFromLink(LSTRK) Given the ZEBRA link to an STRK
bank, return the pointer to the corresponding C structure into which it has been unpacked.

The following auxilliary routine is used in filling the SCAS bank.

• INTEGER FUNCTION NumSCAS() Return the number of simulated calorimeter cell hits in
the event. This is obtained from the RCAL bank. Note that a physical calorimeter cell can have a
number of hits, each of which is counted.

The following “analysis” routines, related to muon veto studies, have been added to the DST library for
the present time as they do not have a residing place in other NOMAD libraries (authors L. DiLella, F.
Salvatore).

• SUBROUTINE MUCAT(IDTK,MUVETO) A routine to identify whether a track is a muon
undergoing a catastrophic interaction.

• SUBROUTINE TwoLineDist(R1,R2,U1,U2,R,DIST) A routine to calculate the distance be-
tween two lines in 3-dimensional flat space.

• void veto(˙Mas Mas), int firstvar(), int secondvar() Functions related to formation of a muon
veto based on Dst information. (inveto.c)

The following routines appear in the DST library but are not currently used in the package. They are
listed here for completeness.

• SUBROUTINE ChkObj(IRET) A (presently dummied) routine to make selections on which
objects in the match table will become MAS banks on the DST. Atpresent no special selections
are made.

• INTEGER FUNCTION FindSVTX(LSVTX) Find the position in the linear chain of SVTX
banks of the vertex with given ZEBRA link.

• INTEGER FUNCTION GeantCharge(ID) Return the charge of a particle with a given GEANT
particle code.

• int TrdMatchDebugLevelSet(int level) Dummy function in order to get around an undefined
reference which at one stage showed up in the phase2 library.(in utilfilldst.c)

• SUBROUTINE ZCARTESIAN˙TRACK(SP, SEP, ST, SET) An interface to the extrapolator
package routinecartesian˙track. It is provided because the extrapolator works in double precision
and the ZEBRA structures contain single precision words. Itwould be used when converting from
momenta stored as (px, py, pz) to (1/p, tx, ty).

6.3. Histograms 75

6.2.4 Access routines to the DST structure

The access routines for the DST package have been described in some detail in chapter 4. Here we will
restrict ourselves to some technical details of where to findthe code.

The automatically generated C functions for bank navigation and single word access to the DST structure
may be found in the filedstgen.c. The automatically generated access functions for the package of Fergus
Wilson [2] can be found in the filedstaccess.c. Neither of these files should be edited directly, but rather
the awk scripts described below should be used to regeneratethem if necessary.

The C access functions which arenot generated automatically can be found in the fileutilaccessdst.c.
These are meant to be “public domain”, as opposed to the access functions which are used in generation
of the DST, which are collected together inutilfilldst.c . These latter functions are really meant to be
internal to the package (i.e. can change without notice), sousers of them should do so aware of this
distinction.

The high level FORTRAN access routines may be found in the following files:

• dstgetblock.FAccess to the contents of the EVS, RVXS, LEPS, SVXS, STKS or SCAS banks.

• dstgetmasblock.FAccess to the contents of individual blocklets (fixed lengthpart) within a MAS
bank.

• dstgetmassubblock.FAccess to the contents of an individual subblocklet within avariable length
MAS blocklet.

• getdstversion.FA REAL function returning the DST version number in decimal format.

In order to be sure that the library version which is being used to access the DST structure matches
the DST structure that has been read in, one further routine is used internally by the code. This is the
FORTRAN routineCheckDSTVersion, which basically flags whether or not the library version andDST
ZEBRA structure are compatible. This routine can of course be found in the filecheckdstversion.F.

6.3 Histograms

In the DST source code, C code may be found which will histogram all words on the DST. This code has
not been included in the dst library, but users are welcome totake this code “as is” and compile the code
with their camel job. The code is generated automatically from a given bankdoc. Instructions for doing
this may be found in section 6.4.

Entry points to the code are:

• DstHistoFileOpen(int lun, char *Filename) will attach a file namedFilename on logical unti
lun into which the histograms are placed. This can be called in FORTRAN for example from
CMUHIN (e.g. CALL fDstHistoFileOpen(60, ’dsthisto.hbook’))

• DstHistoBook() to book all histograms. This can also be called from CMUHIN (e.g. CALL
fDstHistoBook()).

• DstHistoFill() to fill all histograms. This can be called from CMUPROC (e.g. CALL fDstHistoFill()).

• DstHistoFileClose() will output the histograms to the attached file. It could be called from
CMUEND (e.g. CALL fDstHistoFileClose()).

76 Chapter 6. Code

There is also in this directory a kumacdsthisto.kumac which may help in displaying the histograms
with PAW.

The automatic generation of this code from a bankdoc requires the specification of the binning used for
the histograms, and this of course depends on the nature of the word being histogrammed. In the file
dsthisto.rangeswill be found a set of bin parameters for every word which appears in the present or past
DSTs, along with a specification as to whether the histogram should be displayed with log or linear y
axis. This file is used when generating the code, and can be tailored if desired by the user to produce
different binning for the histograms (see next section).

6.4 Awk scripts for automatic code generation

Extending the procedure that has been employed in thedstaccesspackage [2], awk scripts have been writ-
ten which take as input a bankdoc file dst.banks, and automatically generate C structures which map onto
the ZEBRA banks, access code to these structures, a a file of parameters which specify in FORTRAN
the DST banks, and code to histogram all DST words. By employing this method of code generation it
is hoped to reduce the number of errors in the DST library and to substantially ease maintenance.

The following awk scripts are provided in the subdirectoryscripts

• dstaccess.awkGenerates dstaccess.h, dstaccess.c and dstaccess.inc

• dstbanks.awkGenerates dstbanks.h

• dstgen.awkGenerates dstgen.h, dstgen.c and dstgen.inc

• dstparams.awkGenerates dstparams.inc

• dsthisto.awk Generates dsthisto.h, dsthisto.c, a dstXXXXhisto.c file for each bank XXXX, and
dsthisto.kumac

A Bourne shell script,dstauto.sh is also provided, which may be used to generate the automatically
generated code by running all of the above awk scripts. This file may be found in thescripts subdirectory.
Help is given if this is run without arguments. It may be used either to generate these files in the current
working directory, or else to install them in a standard nominated DST directory tree. Suppose one
wishes to install the code in the current directory, based onthe library v7r4. The command to issue is

dstauto.sh /nomad/src/dst/v7r4

This will use the bankdoc files of extension.bank in the directory /nomad/src/dst/v7r4/doc, and the his-
togram binning file /nomad/src/dst/v7r4/histos/dsthisto.ranges. If this latter file is present in the current
working directory, it will be used in preference to the corresponding file above. This allows the user to
customize the histogram binning parameters and to regenerate the histogram code.

6.5 Making changes to the DST code

The DST package has evolved in order to make changes to the code as straightforward as possible. The
main thrust of this effort has been in the direction of generating much of the access code automatically
through the use of awk scripts, as was described above. Theseawk scripts use the ZEBRA bankdoc files
(the .bank files stored in thedoc subdirectory) as input. Therefore, to add or subtract wordsfrom the
DST, or alter the ZEBRA banks in any way, the correct procedure to follow is to edit the appropriate

6.6. Building the DST library 77

bankdoc file for the bank in question, and then run the shell script dstauto.sh, as described above, to
regenerate much of the source code.

Clearly the filling code for the new or altered words cannot bedone automatically, so the next step is to
edit the appropriateFILL... routine, be it for a complete bank or for a MAS blocklet, in order to correctly
fill the words. Because thePRINT... routines contain FORMAT statements which explicitly lay out the
bank contents in the output listing, these must be edited also and the FORMAT statement changed. In
general, the rest of the routine will not need to be changed since in most cases it is written using the
parameters indstparams.inc. It is best to check however.

When the DST format is changed, it should be remembered that the library will need to be recompiled
from scratch, since the commons or structures in the includefiles will have changed. Building of the
library will be discussed in the following section.

6.6 Building the DST library

The DST library is built in a completely analogous manner to the majority of the other libraries in the
NOMAD software, using a Makefile conforming to the standard template.

Assuming that one has a checked out version of the repositorycode, or the directory structure for a
particular version of the DST package, the procedure to follow is the following.

• Go to the top directory of the package (i.e. the directory which contains theMakefile). This will be
thedst directory if working with a checked out version of the code, or the directory e.g.dst/v7r4
if working with an export of a particular version.

• Issue the command

gmake version

which ensures that the fileinclude/dstversion.inccontains the current version number of the pack-
age.

• Issue the command

gmake depend

which generates the correct version of the fileMake.dependsfor the current directory structure.

• Issue the command

gmake

to build the library.

78 Chapter 6. Code

If the set of environment variables $USERSRCDIR, $USERLIBDIR and $USERBINDIR were defined
in the shell in which the library is being built, then the library will appear in the directory $USERLIBDIR
(this is often the case if working with a private developmentdirectory and checked out code). If not, then
the library will appear in a subdirectory of the directory inwhich the Makefile resides, the directory
having the name of the Unix flavour being usedOSF1, Solaris etc. This is usually the case when
working with exported code of a particular library version (as in installing on a machine remote from
CERN).

The library will have the namelibdstxxx.a, wherexxx is the version number as stored in the filedstver-
sion.incmentioned above.

6.7 Documentation

The LateX files for this document can be found in thedoc subdirectory, as can the set of files xxx.bank,
one for each bank in the structure. These contain the raw material for generating the bank doc. In
previous releases these bank descriptors were kept in a single file dst.banks.

To generate a bank doc from this file, one must first concatenate the various files, using

cat dst.bank evs.bank rvxs.bank mas.bank \

leps.bank svxs.bank stks.bank scas.bank > dst.banks

Then run the CERN Library binary dzeX11, and issue the following commands:

createdoc dst.banks dst.rz

drawone DST NOMA

exit

This will produce a PostScript file dst.ps containing the bankdoc, which can be viewed or printed. Note
that it may be necessary, to avoid a warning message, to remove the old dst.rz file, if present in the
directory, before following this procedure.

Chapter 7: Release Notes

In this section some release notes for the current version are given.

7.1 v7r4 Release Notes

The present release is designed to be compatible with recon version 7 and its associated libraries. It has
particularly been designed to function with the v7r7 version of recon, which was produced following a
considerable amount of development on the phase2 library.

7.1.1 v7r3 to v7r4

Two small changes have also been made to the banks:

• The wordChi2MisM has been added to the RVXS bank, recording theχ2 for the hypothesis that
a V0 “points” to the primary vertex. The calculation requires both track and vertex error matices,
and since the latter are not recorded on the DST, it was not possible to recover this quantity in
previous versions of the DST.

• WordsEHit1 to EHit9 of MAS blocklet 201, which record the energy deposition in the nine TRD
planes, now also flag whether these hits are shared with otherDCH-TRD matched tracks. For
shared hits, thenegativeof the energy deposition is recorded; for unshared hits the true (non-
negative) value is recorded.

Previous release notes for earlier versions of the DST library may be found in the corresponding manuals
for that version.

7.2 What is missing and why - v7r4

A list of known omissions and the reason for them is now given.Please report any further omissions and
anomalies that you may find.

• MAS Blocklet 501.

– Word 17 (MuonT0) - Muon T0. This seems to be identically zero in the phase2 banks at
time of release.

7.3 Version 7r4 and Recon

Versions v7r3 and now v7r4 of the DST code is intended to be used to produce DSTs from production
runs of recon v7r7 or later and associated libraries. Note inparticular that the muon library version
v7r5 must be used in conjunction with this version of the DST library. Earlier muon libraries are not
compatible. For other libraries, the versions used in the production of DST v7r2 are appropriate.

Although no longer relevant, we note for historical purposes that for production of DSTs from prod4
output, version 1 DST libraries should be used. In particular the v1r1 DST library should be used, this
being the latest and last version compatible with prod4 output.

79

80 Chapter 7. Release Notes

7.4 Future directions and issues

Users’ comments on the DST and on where work is needed are of course welcome at any time, although
it is expected that any future updates to the DST library at this stage of NOMAD are likely to be rare. In
any event, a list of recent, current, pending and suggested tasks with regard to the DST can be consulted
at any time by reading the DST Web Page [1].

Bibliography

[1] At the time of writing, the URL for this page is
http://pauli.physics.usyd.edu.au/Public/dst/dst.html

[2] Nomad DST Utility Routines. Fergus Wilson. NOMAD-MEMO 96-029
At the time of writing, this document may be found on the cluster in the file $NO-
MAD˙PS/dstgenv1r2.ps.

[3] Nomad Reconstruction Software - Nomad DST Package - Versionv7r2. Kevin Varvell. NOMAD-
MEMO 97-034.

[4] Some Extended Tools for Track Breakpoint Analysis (and a speedup of matrix inversion). Bob
Cousins, NOMAD-MEMO 96-016.

[5] At the time of writing, the URL for this page is
http://nomadinfo.cern.ch/Classified/working˙groups/phase2

[6] NOMAD TRD Electron Identification: Method and First Results. T. Fazio, J-P. Mendiburu, P.
Nédélec, D. Sillou and S. Valuev, NOMAD-MEMO 95-041.

[7] NOMAD TRD Identification of Overlapping Tracks. P. Nédélec, D. Sillou and S. Valuev, NOMAD-
MEMO 96-005.

[8] Parametrization ofe and γ initiated showers in the NOMAD lead-glass calorimeter. R. Petti,
NOMAD-MEMO 97-018.

[9] The Performance of the Hadron Calorimeter. P. Hurst, NOMAD-MEMO 97-042.

[10] PYTHIA 5.7 and JETSET 7.4. Physics and Manual. Torbjörn Sjöstrand. CERN-TH.7112/93, sec-
tion 5.1.

81

